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in the point-mass algorithm which would compromise the accuracy in the deter-
mination of the oceanic geoid, attainable with the SEASAT altimetry or with a
similar high-precision observational system.

A mathematical framework is provided in order to model observations such
as the horizontal (north and east) and vertical gradients of gravity or gravity
disturbance. This development is based on the tensor approach to theoretical
geodesy and is mostly concerned with the second-order derivatives,along local
Cartesian axes, of a general scalar function of position; the derivatives are
expressed in spheroidal and, for a variety of practical applications, in spheri-
cal coordinates. The scalar function of position is specialized to represent
the (total) earth's potential, the standard (or normal) potential and, especial-
ly, the disturbing potential.

This specialization allows, among other things,to model the gradients of
gravity disturbance directly by a suitable set of parameters, such as spheri-
cal harmonic potential coefficients and point mass magnitudes. The pertinent
adjustment algorithms developed in terms of both these kinds of model para-
meters are presented in detail. In addition, similar algorithms are recapitu-
lated for geoid undulations and gravity anomalies, and developed for the de-
flections (north and east) of the vertical. The adjustment algorithms in terms
of the potential coefficients contain minimal approximations, while those in
terms of the point masses contain the familiar spherical approximation.

Two further topics discussed in this report are related to the sea sur-
face topography. The first deals with the average influence of the astronomi-
cal tidal forces on the flattening of an idealized mean sea level, and the
second is concerned with the development of a model in which the presence of sea
surface slopes with respect to an equipotential surface is taken into account.
In a separate development, a comparative analysis is carried out for the node-
point approach and the point-mass approach, focusing on the deterministic par-
tial derivatives entering the observation equations.
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1. OUTLINE OF THE RESEARCH TOPICS

In the recent past, research has been conducted aimed at im-

proving the knowledge of the earth's gravity field and its fundamental

surface, the geoid. The most extensively treated observational mode has

been satellite altimetry. The adjustment model utilized in this task has

been the short-arc model, described and refined in several reports and

papers, e.g. in [Brown, 19731 and [Blaha, 1975,1977,1979]. The body of

altimeter data has been initially obtained via the GEOS-3 satellite. How-

ever, several aspects of the SEASAT observational system have been investi-

gated along with the GEOS-3 system in view of improved determinations of

the oceanic geoid. For example, the SEASAT altimeter has been considered

in conjunction with the so-called precise ephemeris (having the standard

error in position of approximately 2m) and the recommendation has been

reached that the time interval for each satellite arc should not signifi-

cantly exceed 7 minutes, in order to eliminate aliasing effects that could

become noticeable at points far from the mid-arc epoch.

The geoidal surface or its parts have been adjusted in two steps.

The first adjustment has proceeded in terms of a truncated set of spherical

harmonic potential coefficients involving global data sets and resulting in

a fairly smooth global geoid. The second adjustment, based on regional al-

timetry residuals from the first adjustment, has had point mass magnitudes

as parameters and its main purpose has been a more detailed (but localized)

determination of the oceanic geoid. The location of the point masses, in-

cluding their depth underneath the earth's surface considered as a sphere,
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has been stipulated beforehand. A question has arisen whether the point

mass parameters could serve for both the global and local geoid determina-

tions. However, the discussion in Chapter 2 shows that due to accuracy con-

siderations such an approach is not desirable. In particular, the geoid de-

termination could be affected by errors of several decimeters due to the

spherical approximation in the point mass algorithm alone. On the other

hand, if the point mass adjustment is based on a higher-order surface as

obtained through a global spherical harmonic adjustment this approximation

will not compromise the accuracy of the results.

Originally, the satellite altimetry has been complemented by mean

gravity anomalies which have prevented the system of normal equations from

being ill-conditioned due to the gaps in altimeter data (especially over

the continents). Eventually, however, need has been felt for the modeling

of additional kinds of observations. In order to satisfy such requirements,

Chapter 3 provides the mathematical framework for several observational modes,

notably for horizontal and vertical gradients of gravity or gravity distur-

bance. It is mostly concerned with the development and application of

second-order derivatives, along local Cartesian axes, of a scalar function of

position, expressed in spherical coordinates. This development is based on

the tensor approach to theoretical geodesy, introduced by Marussi [1951]

and further elaborated by Hotlne [1969], which can lead to significantly

shorter demonstrations when compared to conventional approaches.

The second-order derivatives of Chapter 3 are formulated in quite

general terms and are applicable to any scalar function of position (denoted

F). If F becomes W (the earth's potential) the six distinct second-order
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derivatives -- which include one vertical and two horizontal gradients of

gravity -- relate the symmetric Marussi tensor to the curvature parameters

of the field. The second-order derivatives are developed also in spheroidal

coordinates. This serves, besides its own theoretical interest, for a veri-

ficiation of the desired formulas in spherical coordinates by confirming

them indirectly, through a coordinate transformation involving differential

quantities and relationships.

The general formulas for the second-order derivatives of F are

specialized to yield the second-order derivativesof U (standard potential,

often called normal potential) and of T (disturbing potential), which allows

the latter to be modeled by a suitable set of parameters, for example, by

spherical harmonic potential coefficients, chosen localized parameters such

as point mass magnitudes, etc. The second-order derivatives of T where the

property AT =0 is explicitly incorporated are also given. According to the

required precision, the spherical approximation may or may not be desirable;

.both kinds of results are presented, The derived formulas can be used for

the modeling of the second-order derivatives of W or T at ground level as

well as at moderate or high altitudes. They can be further applied in a ro-

tating or a nonrotating field.

In Chapter 4, adjustment algorithms are developed for five ob-

servational modes including: geoid undulations, gravity anomalies, deflec-

tions (north and east) of the vertical, horizontal gradients (north and east)

of gravity disturbance and vertical gradients of gravity disturbance. Each

model is presented in the spherical harmonic (S.H.) formulation and in the

point mass (P.M.) formulation. The former does not contain the familiar
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spherical approximation of the earth, while the latter does. The procedure

for computing predicted values of the above observation modes, as well as

their variances, is a part of this development. Also included is the practi-

cal discussion regarding the cut-off distance in the P.M. adjustment, i.e.,

the size of a spherical cap centered at an observation point beyond which

the P.M. parameters are ignored during the formation of an observation equa-

tion.

Of the above five models, the first two (i.e., for geoid undula-

tions and gravity anomalies) have been developed earlier. However, they

are recapitulated in a concise manner, with the cut-off considerationstadd-

ed on, and their format conforms to that of the other three models. Most

of the new development is based on the formulas of Chapter 3. In this re-

spect Chapter 4 is the only chapter built upon another. Most of the chapters

in this report as well as the appendix are presented essentially in a self-

contained manner and can be read independently. A good example of this for-

mat is Chapter 3 whose shortened version is being presented separately as

[Blaha,1980].

Chapter 5 contains two topics related to the sea surface topography.

The first deals with the average influence of the astronomical tidal forces

on the flattening of an idealized mean sea level, and the second is concern-

ed with the development of a model in which the presence of sea surface slopes

with respect to an equipotential surface is taken into account. Such slopes

are known to exist in different parts of the world where they can reach a

few decimeters. Considering the precision of the SEASAT observational system

or other such high-precision systems, these features are detectable. They can
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be modeled and eventually incorporated into the adjustment process. By re-

peating this process at different time epochs, the time history of sea sur-

face slopes in an area such as the Equatorial Pacific Ocean can be studied.

The appendix of this report is mostly concerned with comparing

the node-point approach and the point-mass approach. The bulk of such a

comparison -- which could include a multi-quadric model or other models

used to describe the local geoid -- is the study of the "covariance" func-

tion giving rise to the deterministic partial derivatives forming the ma-

trix of observation equations. The analysis indicates that the main dif-

ference between the above two approaches consists in the somewhat different

shapes of their respective "covariance" functions. If the depth of the

point masses corresponds to the complexity of the reference surface form-

ing the basis of the node-point approach, the similarity between the de-

terministic partial derivatives in the two approaches can be remarkably

good.
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2, SPHERICAL APPROXIMATION AS A LIMITING FACTOR
TO USING POINT MASSES

IN A GLOBAL GEOIDAL REPRESENTATION

A point mass model, in which the adjustable parameters have been

the point mass magnitudes while the location of the point masses has been

stipulated beforehand, lends itself to an efficient treatment only if the

spherical approximation is part of the model. This has been, in fact, the

approach followed in previous applications which have led to a detailed

geoidal representation over a limited area. In such applications, alti-

meter data collected by GEOS-3 satellite have been utilized, together with

the so-called broadcast ephemeris (having a positional standard error of

about 20 meters). A question emerges when a global geoidal resolution --

as opposed to a localized resolution -- is contemplated in terms of the

point mass parameters alone: Would the potential accuracy of such a model

be acceptable in view of the SEASAT (or a similar) observational system

which is far superior to the GEOS-3 system (in both altimeter and ephemeris

accuracy)?

We shall first consider a few aspects in the formulation of a

global point mass model and then discuss the applicability of the model in

terms of future accuracy requirements approaching one decimeter in geoidal

determination. At the outset, such a model should be subject to the global

constraints defining the coordinate system. In spherical harmonic applica-

tions, the coordinate system has been usually defined by stipulating the

values of the following spherical harmonic potential coefficients:
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C10=0, C11=0 Sl1=0, C21=0, 21=0, S22 = constant. (2.1)

The first five relations correspond to the "forbidden harmonics" and the

value of the last one depends on the orientation of the x,y axes with re-

spect to the principle axes of inertia.

The following expressions are given, in a similar fom, on page

61 of [Heiskanen and Moritz, 1967]:

A00 = f d(kM) = kM ; (2.2a)

A10 = fzd(kM), A11
= f xd(kM), B11 = f yd(kM) (

(2.2b)

A21 = fxzd(kM), B21 = fYzd(kM), B22 = fxyd(kM) ;

A20 = f (2z2 -x2-y2 ) d(kM) ; (2.2c)

A22 = f (x2-y2 ) d(kM) . (2.2d)

Here the integral extends over the whole earth, k is the gravitational con-

stant and M is the earth's mass. Further we have (see Section 2-5 of the

same reference):

Anm =(kM) anC= C~nm,

Bnm = (kM) an Snm ,

where a is the earth's equatorial radius.
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Considering a discrete distribution of mass, the formulas

(2.2b)- (2.2d) yield

A10 = (kM) a C10  = zj(kM). ,

A,, = (kM) a C11  = (kM)i ,
3

B11 - (kM) a S11  = Z yj(kM)j
i '(2.2b')

A21 - (kM) a2 C21  = z xz(kM)

B21  (kM) a2 s21  xjzj(kM)j,
J

B22 E (kM) a2  = 2 X A (kM);

3

A20 -(kM) a2 C = (2z -x -y ) (kM) . (22c')3 3

A22  (kM) a2 C22  Z (x -yj) (kM). (2.2d')

From (2.2b'), the relations (2.1) now read

.zj(kM) = 0 xjk(kM)j = 0 , .y(kM)j -0 ,
S'3 (2.3)

.xjz,(kM) = 0 , Xyjzj(kM)J=O , 0 x y (kM) =2(kM) a2 S22.

-8-
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Further,

Z (2z2-xj-y) (kM)j = 2(kM) a (2.4)

(x2_yl) (kM) 4(kM) a2 c . (2.5)
J

However, it is more advantageous to deal with the disturbing

potential (T) than with the actual, "full" potential and the related quan-

tities, since by far the largest point mass magnitudes would be "wasted"

in reproducing the known normal field. Since all the potential coeffi-

cients except C20 , C40 , etc., are zero in the normal field, the equations

(2.3) defining the coordinate system apply exactly as they stand also in

this new situation. In the adjustment terminology, they represent con-

straints. If, in a point mass adjustment, an equivalent of the ellipsoidal

coefficient C20 should be enforced, the relation (2.4) would represent

another constraint whose right-hand side, however, should be set to zero

(it would now represent the departure from the value corresponding to the

ellipsoidal C20). If an equivalent of C22 should be held at a predetermined

value, the relation (2.5) would become a constraint exactly as it stands.

Besides the six constraints presented in (2.3) -- and perhaps two

or more optional constraints similar to (2.4), (2.5), etc. -- two additional

constraints could be utilized in order to match the constraints often en-

countered In adjustments of spherical harmonic potential coefficients. In

particular, the mass of the reference ellipsoid, taken as the mean earth

ellipsoid, and its potential are usually preserved throughout the adjustment.

-9-



This corresponds to preserving the following relationship:

f d(kM) = 0,

fT do =0,

where the first integral extends over all of the "anomalous masses" and the

second integral extends over the whole unit sphere. In terms of the point

mass parameters, these two equations represent the constraints of the fol-

lowing form:

~(kt).=-O0,

J

Z (1/ 1 i)(kM). do i  0
iJ

where ti. is the distance between the j-th point mass and the i-th surface

element (doi).

One disadvantage of the point mass model based on the ellipsoidal

surface as opposed to a higher order surface would be noticed if geoid un-

dulations (N) should be the predicted quantities in an adjustment of only

gravity anomalies. It has been indicated (see [Blaha, 1977], pages 166-168,

on which the results presented by Needham [1970] are recapitulated) that

large errors could be expected in N if the locations of point masses were

limited only to one area. However, much smaller errors are believed to oc-

cur in the predictions of geoid undulations or gravity anomalies if the ad-

justed and the predicted quantities are of the same kind.

-10-



Another disadvantage of the approach considered emerges upon

scrutinizing the basis of the point mass alorithm. If no initial adjust-

ment in terms of spherical harmonics takes place, the "residuals" describ-

ing the discrepancy between the observed and the ellipsoidal surfaces will

be relatively large (they may reach 100m or more in some areas). The role

of the point mass adjustment is to model these discrepancies. However,

since the point mass model contains the spherical approximation and thus

produces results reliable to no more than 2 or 3 significant digits, this

approach would be unable to yield results even approaching a decimeter ac-

curacy. In fact, the geoid determination could be affected by errors of

several decimeters, due to the spherical approximation alone.

On the other hand, a global adjustment of satellite altimetry in

terms of fairly high degree and order spherical harmonic coefficients pro-

duces residuals of only a few meters. If entered into a subsequent adjust-

ment in terms of point mass parameters, these residuals will yield results

which will be essentially unaffected by the spherical approximation.

In summary, upon considering the effect of the spherical approxi-

mation in the point mass model, it becomes clear that the accuracy require-

ments are a limiting factor in adjustments of point mass parameters alone.

Indeed, instead of referring a point mass adjustment tote figure of an el-

lipsoid, an introduction of a higher-order surface as obtained through a

global spherical harmonic adjustment is recommended. Based on the altimetry

residuals in a region of high-density altimeter data, a point mass adjust-

ment can then follow in order to produce a detailed representation of the

local geoid.

-11-
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DEVLLOPED IN SfPHFOIJAL AND 'PHE1RICAL COORDINAIES

3.1 Introduction.

In some geodetic applications use is made of a 3x 3 symmetric
matrix of second-order derivatives of the geopotential (W) with respect to

the length elements along local Cartesian coordinate axes. This matrix re-

lates the symmetric Marussi tensor to the five curvature parameters of the

field and to the vertical gradient of gravity as can be gathered e.g. from

the formulas (12.162) of [Hotine, 1969]. One of the Cartesian axes points

east, one points north and one points toward the local zenith. Such an

orientation of Cartesian axes at a given point in space (P) is linked to

the equipotential surface W= constant passing through P. The directions of

these local Cartesian axes are revealed by various sensors and are thus

physically meaningful.

However, it is sometimes expedient to work with orthogonal triads

whose orientation varies slightly from that of the triad just mentioned.

The orientation may correspond to the surface U = constant where U is the

standard potential, to the surface t= constant, a spheroid, where a is the

third coordinate in the {w,u,a} spheroidal coordinate system described in

Chapter 22 of [Hotine, 1969], or to the surface r= constant, a sphere, where

r is the third coordinate in the {), ,r} spherical coordinate system, X and

@ being the geocentric longitude and latitude, respectively. Furthermore,

the function of position whose second-order derivatives are sought may be

not only W but also U, T (disturbing potential, T=W-U), a generalized coor-

dinate a, r, etc. Before a specialization is made, such a function will be

assigned the general notation F.

-12-
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The unit vectors along the local Cartesian axes x
1 , x 2, and x3,

corresponding respectively to general east, north and "up" directions, are

denoted as e 1)9 t 2) and 1 3) where the superscript "r" indicates the vec-

tor's contravarlant components (in Cartesian coordinates, covariant and con-

travariant components are Identical). In [Hotine, 1969], abbreviated hence-

forth as [H], the above right-handed orthonormal triad is denoted as Ar, r,

vr, but for our purpose it is advantageous to associate the i-th unit vector

with the subscript "(i)". In the local Cartesian coordinates the triad is

depicted as

1(1) = (1,0,01 ... pointing in general east,

It2) = {0,1,01 ... pointing in general north,

1(3) = {0,0,11 ... pointing in general "up".

The desired second-order derivatives of F with respect to the

length elements along the local Cartesian axes x', x2 , x3 can themselves be

viewed as scalar functions of position; any of them can be expressed as

2F/3xaxj = M (j), (3.1)

where use is made of the summation convention for repeating indices and

where the symmetric matrix composed of 32F/axraxs for r,s= 1,2,3 is

32F/ axaxl1  3
2F/ax'3x2  D 

2F/ax 13x 3

{a2F/axraxs } = a2F/aX)ax2  32F/ x2ax2  92F/ ax2ax3

92 F/ax ax3 a2F ax2 3xS D2 F/Dx axJ

-13-



As in this example, { will indicate a matrix where either of the indices

assumes the values 1,2,3. Another notation convention which will be adhered

to is the replacement of dxi by ds(i) as a length element along the axis x

Since in Cartesian coordinates D2F/ax r axS are identical to the second co-

variant derivatives Frs, (3.1) can be rewritten as

a2F/as as IF tr ps (3.2)2F s~) (j) rs (i) (j)'

But this is a tensor invariant which, as its name indicates, has the same

value regardless of the coordinate system in which the given vectors r~k)

and the covariant derivatives Frs are expressed. The six distinct values

obtained from (3.2) with (i),(j) = 1,2,3 correspond to the left-hand sides

of the six equations in (12.162) of [H], provided our notations F, t(1)

t(2) , 1(3) are made to coincide with the notations N, A, p, v of [H], re-

spectively.

Later on when the final results are listed, the more usual geo-

detic conventions will be adopted where the first axis (x) corresponds to

the northerly direction, the second axis (y) corresponds to the easterly

direction and the third axis (z) corresponds to the "up" direction. Thus,

the following transliterations will take place:

a2F/as(1)as(1) / F/Iy2  F

2F/as(1 )as(2) a F/ayax = a2F/axay Fxy

32F/as( 1 )as(3 ) F 92F/Dy3z F yz  (3.3)

-14-



F/3s(2 )'s( 2 ) 
2F/x 2  E Fxx

a F a2 F/axaz =_ Fa=/s(2)3s(3 )  Fxz Fxz,

D2F/as(3 )s(3) a2 F/z2  Fzz.

As indicated at the outset, more than one orthonormal triad ema-

nating from P will be considered. In fact, four right-handed orthonormal

triads will be utilized where the index in parentheses identifies not only

the particular unit vector of a triad but also the triad itself. Upon de-

noting the geocenter by 0, the following description applies with regard

to the third vector of each triad:

e(3 ) .r" vector orthogonal to a sphere centered at 0,

t r ... vector orthogonal to a spheroid centered at 0,

Sr" ... vector orthogonal to an equipotential surface(3 (spherop) in the standard gravity field, cen-
tered at 0,

() ... a general vector coplanar with the other three
vectors above.

This situation is illustrated in Figure 3.1 with some additional notations;

for example, $ indicates the direction of the line of force at P in the

standard gravity field (in agreement with [H], the word "standard" is used

in lieu of "normal"). From the figure one reads

+ = +61 ' (3.4a)

= *+62 + 61 + 62; (3.4b)

-15-



sometimes the notation

6 1 + 6 2 (3.4c)

will be utilized. Figure 3.1 depicts also Z while er-) =( 1 )
~r

/(1") go into the plane of the paper at P.

(3) ( rI

T t

(3)

t rI
P

0 ' 4 equator

Figure 3.1

Schematic representation of four kinds of right-handed
orthonormal triads, i, iV, i" and i

The triad 1 is obtained from the triad iV by means of the rotation

R 1(-T), giving rise to the following vector equations valid in any coor-

dinates:

t COST t( 2r - sinT t r* (3.5)

~(3) = in (21) +cs (3')
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in the matrix notations, these equations are represented by

(T) ~ =R(-T) {r,1 11

.r i)(3.5').

The special cases of interest are the following:

T = 62... triad T becomes triad i"'

T = 0 ... triad T becomes triad i' ( (3.6)

T = - ... triad i becomes triad i .

Starting with equation 0.2), we keep in mind that tensor or vec-

tor equations are valid in any coordinates, such as local Cartesian, earth-

fixed Cartesian (which need not be mentioned again), spheroidal, spherical,

etc. Only two kinds of coordinate systems will be utilized here in order

to develop expressions such as (3.2): the spheroidal coordinate system and

the spherical coordinate system. The former is identified by primes; we

thus consider {x' 1, x'2, x'3} e {W,u,.}, tsr, tr, Fs, etc. In the latter

the primes are absent and the corresponding notations are {x, x2, x31

{A,(,r}, Zr, .r, Frs, etc. That all the expressions so far have been writ-

ten without primes does not mean that they will be considered only in sphe-

rical coordinates. For example, (3.2) can equally well be written as

a2 F'/3ss( ) Frst(ir) {,e (3.7)

since F'= F, the prime on the left-hand side serves only to indicate in

which coordinate system the computation is being made. Similarly, (3.5)

can be written in spheroidal coordinates, i.e., every tr can be replaced

by tr.
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The desired second-order derivatives of F will first be developed

in spheroidal coordinates. The form of the results will correspond to

(3.7) in which, however, use will be made of a more general triad T, i.e.,

a2F'/as(T)s(F) = F e' (3.8)CT) r (T) T)

The other cases, including (3.7), can be deduced from this result upon

specializing T as in (3.6).

Subsequently, the corresponding expressions will be obtained in

spherical coordinates. However, this will not be done directly using the

matrix tensor, the associated metric tensor and the Christoffel symbols in

these coordinates, but indirectly using the already known Christoffel sym-

bols in spheroidal coordinates and several differential relations obtained

from the geometric properties of the two systems. On one hand, this could

be considered merely an academic exercise since the results can be obtained

much faster in spherical coordinates by direct means. On the other hand,

such an approach could prove useful if one wanted to proceed from the sphe-

roidal (or some other) coordinate system to a more complicated system with-

out utilizing the metric, the Christoffel symbols, etc., in this new system.

(Although the associated metric tensor in this new systen can be derived

through the same differential relations as mentioned above and although the

metric tensor as well as the Christoffel symbols can be derived subsequently,

such a process might not be always shorter than the one discussed.) Be that

as it may, the link between the two approaches can also serve as an inde-

pendent verification of the results obtained separately in one and the

other coordinate system.
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In the next step, the development will be carried out directly in

the spherical coordinate system, leading to the results of type (3.2) but

with a more general triad 1, i.e.,

a2F/asas( = F r (3.9)
rs"(T) (j)

The specializations indicated in (3.6) will again encompass the other cases

considered, including (3.2). The approach of [H] adopted in this study will

be seen to lead to the desired results much faster than more conventional

approaches in which advantage is not taken of tensors and their properties.

In the closing part of this chapter, the practical applicability

of the results obtained in spherical coordinates will be discussed. As an

example, three of the six distinct second-order derivatives of W can rou-

tinely be measured as one vertical and two horizontal gradients of gravity.

Upon using the derived results, formulas for the second-order derivatives

of T will be established making it possible to model, among other things,

the "anomalous gradients of gravity". Advantage will be taken of the La-

place equation AT= 0 which will eliminate the need for the second derivatives

of the associated Legendre functions with respect to T, should these be a

part of the explicit model. The desired second-order derivatives of T will

be expressed for a general point in space, whether on the earth's surface

or above it (e.g. at aircraft or satellite altitudes). The results will be

further generalized by being made applicable to a rotating field as well

as a nonrotating field.
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3.2 Derivations in Spheroidal Coordinates

In order to evaluate various quantities in spheroidal coordinates

{w,u,} the values of these coordinates should be known. If, for example,

the earth-fixed coordinates are given, the spherical coordinates {X,4,r}

can be computed immediately from

tgX = Y/X,

tg = Z/(X 2 + y2)-2 (3.10)

r = (X2+Y2+Z2)

When working with spheroidal coordinates the situation is more

complicated. The bulk of the pertinent geometry is presented on pages

187- 190 of [H]. We shall now review some of the basic geometric relation-

ships with the aid of Figure 3.2. The absolute space constant (ae), con-

sidered known, gives rise to a family of spheroids (rotational ellipsoids)

one of which passes through P. The eccentricity (e), the semi-major axis

(a) and the semi-minor axis (b) of the spheroid a= constant passing through

P are related as follows:

e 2 sin , (3.11a)

b = a(1-e2) a cosa . (3.11b)

Except for the (well-known) last equality in (3.12a) below, all the relations

in (3.12) can be read directly from Figure 3.2:
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PR = r sin-0 = b sin u = v cosla sino, (3.12a)

OR = r coso = a cos u = v coso (3.12b)

it thus follows that

tg~o = Cosa tg U = C052ct tgO (3.13)

From the same figure and from the definition of an ellipse we have

d [ r cosi + (ae)]2 + (r sin 12

2 [r cosT - (ae)] (r sinT)

a IM ( 1 + d2).

The spheroidal coordinates are thus computed from

W = X ,

since = (ae)/a, (3.14)

tg u = tg*/cost,

where, in addition to (ae), also A and 0 are known beforehand (see e.g.

equations 3.10). Upon consulting (3.13) and (3.4a) or Figure 3.2, one

can write

tgo tg u/CoSct tg7O/Co52a (3.15)
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F 10 = OF 2 = (ae) =(a 0e 0) absolute constant

A10 = OA 2 = OP's a P

OP = r

QP = v ---

1 ~d (a) ,(a) 2  Rida 2

AF (222 ) of (H],, th meri inshria ori Asi

This~~ reslt inmetso the folwngeti enotry petintenos

{g1 I = diag. {a 2cos2u, v 2Cos 2 , v 2Cotg 2Ct} (3.17a)
rs

{girs} = diag. {1/(a 2COS2U), 1/(V 2coS2 z), 1/(V 2cotg2cd}. (3.17b)

In a triply orthogonal coordinate system we have along the coordinate lines:

ds(1) = (gll)2dx , etc. When introduced in the general formula Lr dx /ds,

this yields £tr f (g11) , 0 , 0 1, etc. Applying this outcome to the
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(triply orthogonal) spheroidal coordinate system and adhering to the

earlier conventions, we deduce

,i1/C I/a cos u), 0 0 01 ,(.

ir,3 ) = o, 1/(vcosm) ,0 1

q)= {0 , 0 , -1/(vcotgx)}

The minus sign in the last relation above is due to a increasing inward;

by contrast, the third vector of our orthonormal triad is an outward-drawn

normal. To reconcile this difference we have adopted -dct/ds(V ) as the

vector's third component. Taking (3.12b) into consideration, in agreement

with (3.5) we write

t r = {/(vcosO) , 0, 0 1

tr { , OT(CS),sinr/(vcotgz)) (3.19)

t - = {0 , sinT/(VCOSct) ,-COST/(VCOtga)}

The Christoffel symbols of the second kind, needed in forming

second covariant derivatives of F, are defined in any coordinates as

r ts tk Cs k](3.20a)

=rk agk/x + agsk /qx r -gr /at(32b
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The symbols are symmetric in the lower indices and as such, are often
t

denoted by the symbol {rs} in tensor calculus. However, in the present

context the symbolism of [H] will be utilized. The above formulas are ap-

plied to our system in a straightforward fashion. In the process, the fol-

lowing differential relations are utilized:

aa/aw = 0, aa/au = 0, aa/aa = -a cotgt

av/aw = 0, av/3u = (a2/V)tg2 a sin u cos u, av/3a =v(-cotga+tgasin 2¢).

After some manipulation we obtain essentially (22.38) and (22.39) of [H]

which, in this reference, were derived somewhat differently. The nonzero

Christoffel symbols (symmetric in the lower indices) are listed as

,I

r12 = -tg u =-cosa tg

F13 = -cotg ;

,2

= sine cos¢/cosa

r ,2 = sina tgt sin cos, (3.21)

2 (.1

r3= -a2/(v2sina cosa) ,

r;2 = -sine cos /cosa ;
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q tga cos2 ,

r 3

r22 = (a2/v2)tga

r23 = sina tga sine cos,
i
3

q33 = -cotg - a2/(V2 sin cost)

The general formula giving the second covariant derivatives

(symmetric) of F reads

Frs= 2F/axr axS rs Ft Ft a aF/ ax (3.22)

In spheroidal coordinates this results in

F I = 32F/a9 2 - (sino coso/cos)9F/au- tg cos 2  aF/a,

Fj2 = 3
2F/awau+ cosa tgo F/aw

Fi3 = 3
2F/Bw3a+cotga DF/3w , (3.23)

F 2 = a2F/ u2 - sinatgtsino coso DF/au - (a2/V2)tg 9F/ac,

% = a2F/9ua3+ [a2/(v2sin cost)] aF/au- sina tga sine coso aF/Dot

Fi3 = 32F/qa 2 + (sine cosO/cosa)aF/Bu + [cotga+ a2/(v2sina cosa)] aF/ac.

We can proceed according to the formula (3.8), symmetric in (i),

(j), in which the values (3.19) and (3.23) are utilized. The results are
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32F/S as =(1/V
2COS20);2 F/ DW2  [tgo/(V 2COSci)] 3F/9u

-[1/(V
2COtgx)] DF/a,

32 F'/S( 1)DS (2) [ COST/v (COSaCOo)]g 2 F/awau

+ [sinTl(v2cotgctcoso)] a2 F/awia

+ [sin( O+T)/(V2COS20)] aF/aw,

a2 Pasa ) s( [sinT/ (V2COSaCco)]3 aF/awau

-[COST/(V
2COtgaCtco)] a2 F/awaa

- COo(+T)/(V2COS2f)] aF/aw,

a2 F/aS 2 )s( [COS2 T/ (V2COS2c)]32F/ 3U2

+ [sin 2T/ (V2COS(Ccotgot)]3 2 F/3auc

+ [sin 2 T/ (V2COtg2 a)] 32F/ 3cL2

- [1/(V 2COSctCOtg2t)] [cos 2T. sincocoso

- sin 2T.u a2/ (V2Sin 2 a)] aF/au

- [1/(V 2COtglcx)] [cos 2T. a 21(V2Sin 2t)
+ sin 2T m sin~coso - sin 2TCotg2 t]9F/ai,

a2 F'as() as (3) '-,[sin 2T/(V2COS2ad]a 2F/ aU2 (3.24)

-[Cos 2Tr/ (V2COSaCotgt)]9 aF/auaa

- [sin 2T/ (V2COtg2a)]a 2 F/ DC2

-[1/(V2COSaCotg2a)] [cos 2T. a 2/( v2si n 2 a)

+ sin 2 Tv siniocoso]DF/au

+ [1/(V2COtglcz)] [cos 2T- sin~coso

-sin 
2 T.a a2/(V2S in2t)

sin 2 T t g ]F/a
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32 P/as()as(j.) =[sin2 T/ (V2COS2Ct)]D2 F/ au 2

-[sin 2T/(vcstotc) F/ au a

+ csT/(cogc) 2F/3t

+ [1/(V2COSctcotg 2t)) cos 2-r * sin~cos4

-sin 2T. a /vsinc)]Fu

+ [l/(V 2COtg3cd]Icos 2T.u a 2/(V2S in2a)

+ Cos 2T COtg2 a+ sin 2T.u sin~coso]aF/ac±.

By setting Tr to 6 2 9 0 , or -6 we obtain the desired second-

order derivatives of F for the triads VI , V or i , respectively, as

indicated in (3.6). The choice T= 0 results in particularly simple formulas;

they can be, of course, obtained also more directly upon replacing in (3.8)

the triad (3.19) by the triad (3.18). The expression for the Laplacian of

F in spheroidal coordinates (AFP) is obtained as the trace of the symmetric

matrix composed of the elements in (3.24) regardless of the choice Of Tr,

i.e.,

AF' [j/(V2cos 20)a 2 F/ aW2+ [j/(VIcos2ct)]a 2 F/9u 2+ [1/(V2cotg2a)ja 2F/a 2

_ [tg /(V2COSCt)] 3Ff3u;

a similar form appeared in (22.41) of [H]. Since the Laplacian is a tensor

invariant the same value must be obtained in any coordinates (spheroidal,

spherical, Cartesian, etc.).
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The computation of 61 is an easy matter as was already shown in

(3.16). On the other hand, the computation of 62 involves a formula ex-

pressing U (standard potential, in Chapter 23 of [H] denoted as -W) at P.

The main task consists in projecting the vector U' (=aU/;X'r) onto ther

triad (3.18), the projections being respectively

au/as( U'r'r
(2 r (2)= [1/(vcosa)]qU/ u , (3.25)

aU'/as(2') E r 2').5

H,,r.) _1(cta]Ua

DU'/Ds(3, )  U r (3')

The expression for U is given in (23.13) of [H] essentially as

(3.26)
U = GMa/(ae)+ GA20Q2 (i cotg C) P2(sin u) + [Va/3- 2a2P2(sin u)/3],

where GM is the product of the gravitational constant and the earth's mass,

w is the angular velocity of the earth's rotation, P2 (sinu) is the Legendre

function in argument sin u and, according to (22.52) and (23.12) of [H],

Q2(i cotga) = i(a +3a cotg 2a - 3cotga) , (3.27a)

iGA20 = -(2/3 ) 2a /[3cotga o _ ao ( +3cotg 2ao )] , (3.27b)

where ao ,ao correspond to a given base equipotential spheroid. Outside

this particular spheroid the equipotential surfaces U=constant are not

spheroids. It is to be noted that if the standard field should be nonrota-

ting, such as considered in some satellite applications, the terms in

(3.26) containing. 2 explicitly would disappear (the numerical value of
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the constant iGA20 in 3.27bwould remain unchanged). In this case, none of

the modified surfaces U = constant would ever coincide with a spheroid.

The angle 62 would be computed exactly as in the present approach except

that the explicit symbols 2 in the pertinent expressions would be replaced

by zeros.

Carr ing out the indicated operations, from (3.25) we obtain

3U'/Ds(2, = [3sinu cosu/ (vcosa)][GA2 0Q2 (i cotga)- C2a2/3] ; (3.28a)

on the base spheroid the expression in the second brackets becomes zero (in

the rotating field). Further we have

U/as(,= - [1/(vcotga)] [J+ LP2 (sin u)] , (3.28b)

where, similar to (23.31) of [H),

J = GM/(ae) - (2/3) 2a2cotga

L = -iGA20(-2 - 3cotg2a + 3a cotga + 3a cotg 3X)

+ (2/3)W 2a 2cotga

Since both (3.28a), (3.28b) are in general negative outside the equipoten-

tial spheroid (rotating field), the desired angle 62 is obtained from

tg6 2 = (-aU'/as(2 ,))/(-aU'/as(3 ,)) , (3.29)

and it is in general positive (at the poles or on the equator it is zero).
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In the nonrotating field the value of 62 would be usually negative; it

can be shown that this sign would start changing at high altitudes, ap-

proximately at a6/3 (about 2.1x 106m) above the base spheroid.

Denoting the standard gravity at P by y , its normal component

(positive inward along -ds( 3 ,)) by Yn and its meridian component (positive

north along ds( 2 ')) by Ym, we have

Yn = _Uh/as(3 ') I (3.30a)

Ym =  DU'/as( 2') ' (3.30b)

nY m , (3.30c)

and from (3.29),

tg 62 = -ym/Yn (3.31)

We notice that the Somigliana formula appearing in (23.24) of [H] gives Yn

at any point in space (on the base spheroid it follows from 3.28athatYm=O

and Y= Ynd . However, Yn given by that formula is computed from Ye and y p

representing the standard gravity on the equator and at the poles of the

coordinate spheroid passing through the point in question (if it is not

the base spheroid such a spheroid is not an equipotential surface). In

the applications involving the base spheroid the rigorous Somigliana for-

mula is quite suitable. However, since in general for each point in space

the corresponding ye and Y would have to be computed first, the present

approach giving Yn in (3.30a) in conjunction with (3.28b) appears to be

more practical. This assertion would hold all the more if the nonrotating
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field were considered instead ( such a case all the formulas of the

present approach would be simplified upon replacing the explicit symbols

r2 by zeros).

Having obtained 62 , the desired derivatives can further be re-

fined so as to refer to an i system which characterizes the actual gra-

vity field. This system, which could be termed as a system of the local

vertical, differs from the i" system by two rotations, each corresponding

to one component of the deflection of the vertical at P. In general, the

second covariant derivatives in any two coordinate systems are connected

by

{Fi} = {x r,/i IT{Fr 15}{BxS/aj} ;

the indices are unimportant here since we are dealing with matrix expres-

sions. If the two systems are Cartesian -- and thus the Christoffel sym-

bols vanish -- one can write

{2F/R ilj = CT{a2FF/ xrax"SC , (3.32)

CT = {I~i)x ,,r} {d i} = cT{dxr}

In our case CT represents the following rotation matrix:

CT= R2(n)RI(-C) 0 1 (3.33)
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where n r are the north and east components of the deflection of the

vertical at P. If (3.33) is utilized in (3.32) and the previous conven-

tions are adhered to (dR 1 written as ds (j) ,F written as FP), it follows

that

3
2F'/as(l)as(i) = 2F/as(II)as(j.,) - 2T,3 r as1)sY

a2~~ ~ P/slas a2 F'/s( 1.)as( 3I)

a2P/s~ias~) a P /s(1)as3")+ a2 F/Ds()a(2 I)

T- f[;2 F'/s(3 1 )3s( 3 "1  2 
2F' s (1 -- ),S( 1 .,)]

(3.34)

D2 PDs( as~i 32 /as2")a(3 - CI[F'/9s(3 I)as(3 I)

-a
2 F1/as(211)as(211)]+ ri 2F/s,,)s2,

+ 2n a2FP'fas( 1 6)as( 3 1)

These relationships will be used also later when dealing with spherical

coordinates, in which case the primes associated with F will be dropped.
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3.3 Transformation of the Results from
Spheroidal to Spherical Coordinates

The expressions in (3.8) and (3.9) being tensor invariants yield

the same values in any coordinates, i.e.,

= F ts = F t (335)B2IsT)sj rs MT (j) rs i j

In spheroidal coordinates the last relation resulted in (3.24) featuring

the partial derivatives 3
2F/w 2 , ... F/acx . It is now required that

the second-order derivatives (3.35) be written in terms of 3
2F/ 2 , ... ,

DF/ar . However, this task is to be accomplished without resorting to a

development in spherical coordinates which is the subject of the next sec-

tion. This amounts to avoiding the formulation of the Christoffel symbols
t

(r r) in spherical coordinates -- or in some other coordinates if we wish

to generalize this approach -- and taking instead advantage of r' t  al-
rs

ready found. The price to pay is the need for certain differential rela-

tionships between the two systems.

The straightforward approach adopted in this derivation proceeds

from

a2F/ax' raxs F st (3.36)

where

F= (axk/ax't)Fk ; F/x 't, Fk aF/Bxk (3.37)

-33-



The first member on the right-hand side of (3.36) is developed as

a2F/Dxirax's Fr'/3x' = [(axk/gx'r)Fk]/ax ' s

= BP/axr)(3xq/3x, s)3 a2/xPax q

Fk (x k/ax'r)/Dx's

where the presence of the second term stems from the fact that in general

coordinates a second derivative is not a tensor. If this expression as

well as (3.37) are substituted in (3.36) and if the new equation is con-

tracted with t). s)- as indicated in (3.35), one obtains

a2F/3S(T) S(j)  =( 2Fl axr~xS)tr=Z_ S + [N (x klaxr)/Dx s

( i ) (J)

- t x k ,xt])z,r) ,s F/ xk (3.38)rsX /_x D j

where use has been made of the general transformation

= (axm/ax'n)t 'n (3.39)

Equation (3.38) is the desired formula in which all the derivatives involve

only the spherical coordinates, yet the Christoffel symbols in these coor-

dinates are absent.

As a matter of interest we may equate (3.38) with the middle

member of (3.35) developed according to (3.22). It then follows that the

second term on the right-hand side of (3.38) must be equal to
rk tr s F r 5 I
rs (-) ( k for any (- )  and F. Thus it must also hold that
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r=k = , xl/x-t - ( xk/Zx'r)/ax'Sj(ax'r /xP)(qx'S/ xq). (3.40)

The presence of the second term within the brackets in (3.40) is due to the

Christoffel symbols not being tensors. When the Christoffel symbols on the

left-hand side of (3.40) were computed in this manner, the agreement with

those derived directly in spherical coordinates was perfect. This confirms

the formula (3.38) of which (3.40) is a by-product.

An important step in the present development is the formation of

the matrix {axrk/ ' r } which, in (3.38), serves to obtain t)r t ) from
(_1) (3G)

their counterparts in spheroidal coordinates as is shown in (3.39). Fur-

thermore, the elements of this matrix have to be differentiated with re-

spect to x's. In addition to the formulas (3.11) - (3.16), some of the

more important relationships needed in these tasks are:

sin 1 = sin
2oasin~cosf = (v/r)sin 2asinOcos¢ , (3.41a)

cOs6 1 = a
2/(vr) , (3.41b)

sin u = (v/a)cosasin¢ , (3.41c)

cos u = (v/a)coso , (3.41d)

=2a~SUL 20S j
v a(1- sin ccos u)2 /cosa = a/(1- sinsin2¢) , (3.41e)

I sin 2asin 2o = cos 2a + sin 2acos2  = a2/v2 = (r/v)cos6 1  (3.41f)

After some manipulation we deduce
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(3.42)

aXWaxa )/aa 1 1
fx k/axinr aj/aw a-0/au aT/act 0 (v/r)coscacos61  (v/r)cotgasin61 I

- ra r/3u 3r/ ct J L -vcoscsin6- -vcotgacos61

Since this matrix can be decomposed into a product of three matrices of

which two are diagonal and one is a rotation matrix, fax' p/axq} can be

farmed without any matrix inversions. However, the latter transformation

matrix is not needed in this presentation.

By applying (3.39) and (3.42), the vectors appearing in (3.19)

can now be expressed in spherical coordinates as

tr ~{1/(r cos- ) , 0 0}
(T)

t r 1 0 , cos(6 +T)/r ,-sin(6 +T)} (3.43)
(2)

I r f= sin(6 +T)/r ,cos(6 +-r)}

In order to differentiate the elements of (3.42) with respect to

X sthe following auxiliary relations are derived:

30/9w= 0, a4/au= r cos6 1/(vcost), ac/aar sin61/(vsintcost);

3v/aw= 0, av/Du= r sin6 1/Cosat, Dv/acz vtgz- r cos6 /(sinctcosa);

a6/aw= 0 ,6 1 /N= r cos61/(vcosz) - (vfr)costcos51

D1 a=r sin6 IA/vsinicost) + (v/r)cotgctsin6

-36-



After some manipulation, a(axk/Dx'r)/ax's is expressed in the following

(symmetric) pairs "(r,s)":

(1,1) ... a{1,0,0}Iw= {0,0,0},

(1,2) ... {o0,0,o}

(1,3) ... {o,o,o} ,

(2,2) ... {O, (v2cos2 c/r2)sin 261 , -r+ (v2cos2c/r)cos261}

(2,3) ... {0, -1/sina+ (v2/r2)cosacotgacos 261 S

-(v2/r)cosacotgasin6 1cos61 ,

(3,3) ... {0, (v/r)cotg2asin61 - (v2/r2)cotg2asin 261,

r/sin 2ca+vcotg 2acos6 1 + (V
2/r)cotg2asin 261}.

The next step involves the formation of r' t axk/ax ' t , all thers

elements being already known. The straightforward algebra produces the

following results listed again according to the pairs "(r,s)":

(1,1) ... {0, sincosj, -r cos
2 },

(1,2) ... {-cosctg , 0, 0}

(1,3) ... {-cotga, 0, 0}

(2,2) ... (0, 0, -r}

(2,3) ... (0, -1/sina, 0}

(3,3) ... {0, (v/r)cotg2 sin61, r/sin 2 a+vcotg'octos6 1}
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This, together with the preceding results, leads to the expressions for

[a(ax k/ax~r)/axls - r't ax k x t] listed below again according to the pairs

(1,3) .. costg, 0, 0

(2,2 ... {0'(V2CS2 (V2OS2(3.44)(2,) .. {, (~co~c/r )sin 2612 (vcsa/r)cos2S 1} I

(2,3) ... {0, (V2 /r 2)cosacotgctcos 26 , -(V2 /r)costcotgcasin61cOS6 ill

(3,3) ... (0, _(V2 /r 2)cotg2ctS in 261, (V2 /r)cotg 2ctsin 26 1}

The results (3.44) are to be contracted with tappearing

in (3.19). The thus obtained expressions are now listed according to the (sym-

metric) pairs "(i,J)":

(1,2) ... tsin(0+6 I+T)/(r2COS2O), 0, 01

(1,3) ... {-cos(_0+6 +T)/(r 2cos24O), 0, 01,

(2,2) ... {0, sin 2(6 +T)/r 2, COS 2(6 +T)/r}

(2,3) ... {0, -cos 2(6 1 +)/r 2 i 2(1+)r

(3,3) ... {0, -sin 2(6 1 +-)/r2  sin ( 1 +T)/r}

In the second and third expressions of (3.45), * has been replaced by T+1
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Finally, the second partial derivatives in the first term on

the right-hand side of (3.38) are contracted with t - appearing in
(I) ~ k(3.43) and the elements of (3.45) are contracted with Fk -FWax . Thus

the desired second-order derivatives of F expressed in spherical coor-

dinates are:

32 /3s-fas(f)= [1/(r~cos2O)]D2F/ D2 - (tgO/r 2)DF/30+ (1/r)3F/ar,

IaFI3s(y)aS(' ) = [COS(S 1+T)/(rco)] 2 /~

-[sin(6 +T)/(r COSIT)];2 F/axar

+ [sinw I61+T)/(r~cs)a/.

+ CS co( 1 +T)/(r cs)aF/3Aar

+ [cos(T+6 1+T)/(r 2COS24i)] F/DX (3.46)

32 F/3s(-) DS(-) = [COS2 (61+T)/r 2)32F/ a0i2 _ [sin 2(61+T)/r]3 2 F/aO-ar

+ sin 2(6 +T)32 F/ar 2 + (sin 2061+T)/r 2] aF/3_O

+ [COS2(6 +TE)/r]3F/ar,

32 F/s (2) 3s(j 3 [ sin 2(61+tr)/r 2]3 2F/ a 2+ (cos 2(61+,t)Ir] ; 2 Ffar

- sin 2(61 +T)a2 2F/ar 2_ [cos 2(6S1+T)/r 2] 0/aO

+ 1-[sin 2(6 +T)/r]9F/ar
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a2 F/as3)'s3)- [sin 2(6 1 +)/r 2 2F/ F  + [sin 2(6 +T)/r] a2F/ r

+ cos2 (6 1+ )
2F/ar 2 - [sin 2(6I+T)/r2] F/

+ [sin 2(61+T)/r] F/ar .

As in the preceding section, if T is set to 62 , 0 , or -61 the desired

derivatives are obtained for the triads " , i' , or i , respectively.

These results could again be refined upon transformation from the triad

i" to the triad I in the manner of equation (3.34) in which the symbol

F' would now be replaced by F.
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3.4 Separate Derivations in Spherical Coordinates

The well-known formula for the metric in spherical coordinates

{X,F,rl reads

ds2 = r2cos
2j dX2 + r2d 2 + dr

2

yielding the metric tensor and the associated metric tensor:

{grs } = diag. {r2cos 2 , r2, 1 } , (3.47a)

{grs} = diag.{1/(r 2cos 27), 1/r2, 11. (3.47b)

In agreement with the procedure which lead to (3.18), we now have along the

coordinate lines:

t r ) = {1/(r cosy), 0, 01

(2) = {0, 1/r, 0 , (3.48)

(3) = {01 0, 11

In order to represent the triad i, the above triad i has to be rotated

around the first axis by the angle -(Si+T) as can be gathered from Figure

3.1. We thus have
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= r = {1/(r cos@), 0 , 0) ,
((3

Z r = os(61+_,)r2 ) sin(61+T ),r)  {0 , S os1+T)/r,

- sin(61+)}, (3.49)

tr = sin(61+T)Z +COS(6 1+T)Z r {0 , sin(61+T)/r,

cos( 1+T)},

which agrees with (3.43).

Upon inserting the expressions (3.47) into (3.20), the following

nonzero Christoffel symbols are readily obtained:

r2 = -tg,

r3 = 1/r ;

r2 = sin coso ,

(3.50)

r = 1/r ;

r31 = -r cos2,

S-r
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The application of (3.22) yields immnediately the second covariant deriva-

ti ves:

F1  D2 -/2 SinfCOS-f DF/a-+ r cosT OF/Dr

F 2  a2 2F/aXaT+ tg-f 9F/DX

F 13  a2 ~3FI/)r- (1/r)3F/ X ,(3.5)

F22  D2 F/ aj2+ r aF/Dr,

F 3  D2 aF/ajar- (1/r)aF/aj

F 33  92 aF/ar 2

With the aid of (3.49) and (3.51) the desired second-order derivatives

a2 Fasmarj)can be computed according to (3.9). Upon carrying out the

indicated operations the results (3.46) are obtained. The link between

the two coordinate systems established in the preceding section has thus

confirmed much of the development in either coordinate system.

By setting T to 62 ,0 , or -6 1 the desired derivatives are ob-

tained for the triads i" , Vor i , respectively, as stated earlier. In

order to evaluate the present methodology, the case T= -61 is of interest.

Accordingly, from (3.46) we deduce

D2 F/as(I)as(1) [ 1/(r 2COS2)]a2F/aX2

-(tgIf/r 
2 )F/+ (1/r)aFfar

aF/Ds(l )as( 2) =[1/(r~cs) aF/aaj

[sirn /(r cs2 )aF/aX
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32F/as(1 )'s( 3) - [1/(r cos )]a2F/3X~r - [1/(r2cos )] DF/3X

;2F/as( 2)'s( 2) = (1/r 2) 2F/a 2+ (1/r)DF/ar , (3.52)

2 F/s (2)3s(3 ) = (1/r)3 2F/3 r- (1/r2) F/aW,

2 F/aS (aS(3)  2 3aF/ar 2

Clearly, this outcome could be obtained also directly upon using (3.48)and

(3.51). In this case, only the steps corresponding to (3.47), (3.48),

(3.50) and (3.51) would have been involved while (3.49) and the more gen-

eral results (3.46) would have been by-passed.

The process leading to (3.52) would have required considerably

more space if the tensor approach to this problem had been avoided, whether

for pedagogical or other reasons. This can be appreciated upon consulting

the development in [Tscherning, 1976], where our formulas (3.52) were ob-

tained, in the present order, in equations numbered as (53), (55), (57),

(52), (56) and (54); our notations ds( 1) , ds(2 ) , ds(3 ) correspond re-

spectively to dy , dx , dz in this reference. The methodology used there-

in was not based on tensor analysis but made use of the ordinary differen-

tiation and interrelationships between the local Cartesian coordinate sys-

tem, the earth-fixed Cartesian coordinate system and the polar coordinate

system. Such a paper is certainly useful, especially from the pedagogical

point of view, since it addresses itself to large audiences and exposes

the treated subject in great depth. On the other hand, in [Tscherning,

1976] the derivations leading to our formula (3.52) required eight pages

(pages 73 through 80), even though only the simplest case corresponding

to the triad i was treated. We might thus conclude that although the
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methodology of Hotine [1969] requires prior knowledge of certain elements

of tensor analysis, this disadvantage (if it is indeed a disadvantage) is

more than offset by the ease and rapidity with which many general, as well

as specialized, formulas in geodesy may be derived.

The well-known formula giving the Laplacian of F in spherical

coordinates is readily obtained as the trace of the matrix composed of

the elements presented in (3.46) for any choice of T; the easiest choice

is, of course, that of T=-61 corresponding to (3.52). In every case

we obtain

AF = [1/(r2cos2)] D2F/aX 2 + (1/r2)32F/Bf + a 2F/ar 2

- (tgF/r2)aF/aW+ (2/r)aF/ar . (3.53)

As has already been pointed out in the closing statement of the preceding

section, the results (3.46), specialized for the triad i" , can be further

refined upon transformation to the triad i ; it is immediately verified

(see 3.34) that AF remains unchanged.

A practical question left unanswered so far concerns the deter-

mination of the angle 62 needed in specializing the results (3.46) for

the triad V . In fact, the angle needed in this task is the total angle

6 6 1 + 62 ,(3.54)

where 61 is known from (3.16). In order to determine 6 we proceed as in

Section 2 where 62 alone was sought. The vector Ur will now be projected

onto the triad (3.48), the projections being respectively
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aU Utr -355

aU/as(2) U( 2) (/rU/3.5

au/ ( U) 3)

Similar to (3.29) we have

t6=(-au/as(2))/(-aU/as(3)),(.6

which is in general positive whether in a rotating or a nonrotating field

(at the poles and on the equator it is zero). The radial (positive in-

ward) and the meridian (positive north) components of Y at P are now de-

noted as Y n YM we have

in -VU/s( 3 ) (3.57a)

Ym aU/as (2) (3.57b)

y (2 + ^2) ;--257c
Y (n YM)35c

and from (3.56),

tgcS = -Y M/Y n (3.58)

In expressing (3.55) explicitly, use can be made of the spherical

harmonic expansion of U which reads (see e.g. [Blaha, 1977], page 79)

U =(GM/r)[1 + (a /r) 2C* P(sr)+ (a/)4C* P(sn)+

+ W~ 2 r2 Cos~ (3.59)

-46-'



where C* .. are the spherical harmonic coefficients in the

standard field, linked to iGA20 in (3.27b) as follows:

Cltn2) =(_1)n[(2n+l)+ (2n-2) Q e2n- 2] / [(2n- 1)(2n+l)]

Q = iGA20(ae)/GM

In analogy to Section 2, if one wishes to consider a nonrotating field the

terms containing Wi explicitly should be dropped. From (3.59) we express

=U O (GM/r) [(a /r)2CO0 P~sin- )/d4+ (a0/r) 4C*dP(sinT)/d4+.]

-w r sin~cosT (3.60)

Wuar =-(GM/r 2) [1+3(a /r )2C* P (sirf-) + 5(a /r )4C* P (sinW) +..

+ )2r cos2T (3.61)

the terms containing the coefficients beyond C*0 and certainly those beyond

C*are usually neglected. For reference purposes we list:

P2 sin O) = 1-(3 sini2T~-1

P4 sinIo) = (1/8)(35 sin'o-30 sin20+3);

dP2(sin-)/dI =3 sinqcos-j

dP4(slnO)/d"= (5/2)(7 sin20- 3)siniocos~ 3.2

d2P 2 (Sln )/do-=3(-2 sinzI+1)

d 2p 4(sin O)/djo2 = *(-140 sin+ 135 sink-- 15)

The inclusion of C*would follow along the same lines.
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In this section the function F is treated in spherical coordin-

ates and is first specialized to U (standard potential) and then to T

(disturbing potential). Also, the more usual geodetic conventions cor-

responding to (3.3) are adopted. First we consider

F U,

T 6 2 (the triad i is replaced by the triad i")

taking into account the property DU/aX=O0 and the convention (3.54), the

results (3.46) read

U x11II = (COS2 6/r 2)D2U/3j 2  (sin 26/r)a2U/9T3r

+ sin 26 32U/ ar 2 +(sin 2,51r 2)aU/aT+ (COS26/r)aUl/ar9

U =1 y1 0

U l ( 1- sin 261r 2) a2U/ac$2+ (COS 26/r) 32U/ a~ar

- sin 26 32U/ ar2-_ (cos 26/r 2) DU/aT+ (sin 26/r)aU/ar

U -(tgT/r 2)aU/a0_+ (1/r)aU/ar ,(3.63)

yz

U = .(sin 26/r 2) a2U/ -2 + (sin 26/r) a2U/ aOr

+ COS 26 a2U/ar 2 _- (sin 26/r 2)3U/a4O+ (sin 26/r)aUfar
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Equation (3.53) applies now in the form

AU U x fx1 + U syo + U = tzt (1/r 2)32U/aT2+ 92U/Dr 2

-(tgW/r 
2 )aU/ 3,f+ (2/r)aU/3r .(3.64)

The first partial derivatives needed in (3.63), (3.64) have been presented

in (3.60) - (3.62). The second partial derivatives follow as

=(GM/r) [(a 0/r)2 0 d 22 sri/

+ (a/r 4C* 2p(sin)/dF- )2 r 2(COS2T_-sin 2 -)

92U/ ar = -(GM/r 2) [3(a /r )2C*0dP(sinp)fdT (3.65)

+5(al/r) 4C*0dP (sin )/dT+. ] - 2i 2 r sin;FcosT

32UJ/ar 2 = 2(Gv/r 3) [1 + 6(a /r )2*P(iT0 2
0P2(sn?

+15(a /r)4C* P(i-)+* + )CS-0 40P4 snE . cs 2

in which the formulas (3.62) apply again. If these explicit partial deriva-

tives of U are used in (3.64), the coefficients of C*0 , .. are

seen to be zero and the Laplacian is confi med to be

AU =i& 2 
.(3.66)

If a nonrotating field is considered the Laplacian becomes zero and U be-

comes a harmonic function (as is T or the gravitational part of W).
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If we wish to obtain the second-order derivatives of U in the

triad i rather than in the triad i" , the expressions in (3.34) are

specialized (U is written for PF, etc.) and combined with (3.63) to

give
(3.67)

u RR 2' U ,. , - 2 u ",. sins6- 26)/r2];2U/;T7

-[(sin 26+ 2Ecos 265)/r] D2 U/Tr

+ (sin 26 +sin 26) 32U/ar 2+ [(sin 26 +2Ecos 26)/r 2]aU/3T

+[(COS 26_-Esin 26)Ir]3U/ar,

u Ry=j x1 -n[ ,(sin 26/r 2) a2U/DT 2 + (cos 26/r)32 U/a~ar

- sin 26 a2U/ ar 2  (cos 26/r 2)a1/gT+ -(sin 26/r)aU/ar]

u ux 11z (u ZI-TO Ux") =[ sin 26+Ecos 26)/r 2 ]a2U/a-f 2

+ [(cos 26- 2&sin 26)/r I a 2U/ar - (1- sin 26 + cos 26) 2U/;r2

-[(cos 26- 2 sin 26)/r]U/+ [( 2sin 26 + cos 26)/r]aU/3r

__ U-(g/ U ,)D = -ri+(si1/r)a~U/ar +(i 6/) 2 /
yy yyy

+ Cos 26 DJ/3r 2+ [(tgT- sin 26)/r 2];U/aT- (COS2 6/r)aU/Dr}

u uzliil+ 2 Uk,, T" = [(sin 26+ sin 26)/r 2]32U/ 0I2

+[(sin 26+ 2 cos 26)/r] a2tJ/ -r + (COS 2 6-_ sin 26 )a2UWar 2

-[(sin 26+ 2Fcos 26)/r 2]U/3 + [(sin 26+ &sin 26)/r]DU/ar
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For practical applications, the relation

W = U+T

leads to W = UH + , etc., where W, , etc., may be directly observed.

The observations could be considered at the ground level or at higher

levels (aircraft altitude, satellite altitude) and distinction could be

made between the rotating and nonrotating fields. From the observations

W22 , etc., and from their counterparts U. , etc., the values T, , etc.,

can be derived and modeled by spherical harmonics, point masses and other

means. For example, lower degree and order spherical harmonic coefficients

may be considered fixed and higher degree and order coefficients may be

solved for in a least squares adjustment; or instead of solving for these

coefficients, local parameters such as point mass magnitudes can be adjust-

ed. In the most rigorous case, the values to be modeled are

T. = WRR - U RR

T. = WR2 - URI ,

(3.68)
T -- W- - U ,

yz yz yz

T22= W - U12



',Irc. I , ,I.., amre* r' I-4 Iwily ',a Ii (puiaii II I, ., -i 1~ r 1.31 I

involved In their formulation can be replaced by the trdid I" , P

or even i ; the case i' can be viewed as a spheroidal approximation and

the case i , as a spherical approximation. On the other hand, the

spherical approximation with regard to U etc., would in general re-

sult in prohibitive errors. If a simplification is to take place in

this respect, we assume that it will result in Uz,,z , etc., replacing

Un , etc. Below are listed the practical counterparts of (3.68). With

regard to T, the triad i identifying the spherical approximation (in paren-

theses) and the triad i" are considered:

(Txx) Txx" x - Uxx x xRRx

(Txy=) Tx,,y,, WiY ,
xyx

(Txz) Tx, W - xz

(3.69)

(T yy) W - U I
yy y y y

(T =) TW,,z,, W
yz yz y2

(Tzz=) T zz, W - Uz,z,

the values Uz,,z,, , etc., have been presented in (3.63) and the values

Tzz , Tz,,z, 11 etc., will be developed shortly. It can be shown that

errors caused by simplifications in the horizontal gradients of standard

gravity (U , U..) and in the vertical gradient of standard gravity (U 22)

reach approximately the following values:
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UR.. -0.011 E per V" in ,

Up ... -0.011 E per 1" in n,yz

U 0.000024 sin 21 E per I" in .

The error in U is completely negligible under any circumstances since

even if C were 60" it would only reach 0.001 E (the measurements are

often considered good to ±0.05E, where EF Eotvos = 0.1 mgal/km).

In order to develop the second-order derivatives of T in (3.69),

we specialize (3.46):

F T

T 62

The expressions for Tzz , etc., can be obtained by simply transcribing

(3.46) with T replacing F , 6 replacing (61+T) and dx, etc., replacing

ds( 2) , etc.; there is no need to list the results again with these minor

notational changes. When T is developed in spherical harmonics, such re-

sults could be made computationally more economical by eliminating a2T/aT 2

which involves the evaluation of d2P nm(Sin)/df2 , where P nm(sinW) are the

associated Legendre functions in argument sinf. By contrast, when U was

considered, the corresponding two or at most three second partial deriva-

tives with respect to - were exceedingly simple to evaluate in terms of

even powers of slnf (see equation 3.62). In the present situation, a2T/aT 2

can be eliminated upon using

AT = 0, (3.70)
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whero' the Laplacian of T is given in (3.53) with T replacing F ,hence

+ (tg /r 2) DT/aj- (2/r)aT/Br .(3.71)

With the substitution (3.71) the transcription of (3.46) yields

upon incorporating the above-mentioned notational changes:

T =1 . _[cos26/ (r 2COS~)];2 T/3X 2 _(sin 26/r)a2 T/ Pr

-cos 26 a2T/ar2+ [(tgo cos 26 +sin 26)/r 2 ]T/DT

-(cos
26/r)DT/ar

T [cs/r2~T]2TW0 [sin6,'(r cos7O)]@2T/axar

+ [sin(T+6)/(r 2COSZO)] 3T/ X

T =~zI -k(sin 26/(r 22s)]a2T/ aX2 +(cos 261r) @ 2 T3r (3.72)

-sin 26 a2T/r 2 _- [(cos 26- - sin 26 tgf)/r 2 ]31/a-

- (sin 26/r)aT/ar,

T yia.y I= [1/(r2cos2T)] 32T/aX2 - (tgf/r 2 )T/a+ (1/r)T/ar

T [sin6/(r cs)aT/axaf+ [cos6/(r cosW)]a 2T/aX~r

-[cos(-f+6)/(r 2COS2-)] 3T/aX,

T zio., -[sin26/(r 2COST)]a2 T/ aX2+ (sin 26/r) D2 T/ Or

+t cos 26 DT/r 2 _ - [sin 26 - sin26tg7O)/r 2] / O

- (sin 26/r)3T/r

Some of the algebra is verified immediately by confi ming (3.70).
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The specialization of (3.46) with T -6 1 already resulted in (3.52).

If also (3.71) is utilized (3.52) can be transcribed as

T -x [1/(r'cos2I)1lT/ DX2  a2 T/ar 2 + (tgo/r 2 )WT/

-(1/r)BT/ar

T =[1/(r 2COS-)]3 2 T/MXaT+ [tg-o/(r 2cos70)]DT/aX
xy

Tz= (1/r)a 2 T1/a-ar- (1/r 2 ) DT/a (3.73)

T 1(2COS2T)]a 2 T/ aX2 -(gr 2) aT/aT+ (1/r)aT/ar

However, in thiscseonlyT., oriinaly otined @2 T/ 3 2 ;this original

Before discussing the usefulness of (3.73') and some of the circum-

stances leading to the choice of the triad i over the triad i" or vice versa,

we present yet another set of formulas which may be said to characterize an

intermediate precision. This set is essentially (3.72) where the second

and higher powers of 6 are neglected in the series expansion of trigonometric

functions. We thus obtain (with 3.71 already incorporated) from either

(3.72) or (3.73):
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Txiaxme T xx-26Tx -[l/(r 2COS2-)]2 T/ 2 -2(6/r)32 T/a~ar

-2 aT/ar 2+ [(tg + 26)/r 2] aT/D$_ (1/r)DT/ar,

+ [(sino+6cos)/(r 2COS 2
$)] T/aX

T ~zl Tx + 6(T x- T =z -6( CS-)D /D2 1r3T3~

-26 3
2 T/ar 2 _ [(1 - 6t$/ ] Ta_ (6/r)DT/ar

(3.74)

T = I Ty = [1/(r 2cos2W)] ;2 T/ ;X 2 _ (tgF/r 2 )T/T+ (1/r)DT/;r

T11" Ty + 6TY = [6/(rcos-o)] 2 T/a~aT+ [1/(r cos$_)]32T/aX~r

S[cosT- 6sinO)/(r 2COS2 -)] DT/aX

T He T + 26TZ , 2(6/r) a2T/ ar +3 2 T/ar 2 -2(6/r 2 ) 3T/ 3F

The angle 6 called for in (3.72) or (3.74) is usually known beforehand since

it is needed for computing the second-order derivatives of U in (3.63). If

this angle were not readily available (e.g. if the second-order derivatives

of T were supplied directly and would not have to be determined from the

second-order derivatives of W), it could be approximated by 61=- and

we would then be in the presence of the spheroidal approximation mentioned

earlier. In this case one would quite logically use (3.74) over (3.72),

since the errors caused by the spheroidal approximation would be in general

much larger than the errors in (3.74) caused by the simplification of the

formulas in (3.72).
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It has been suggested that the quantities to be modeled (second-

order derivatives of T) could be described by more than one set of para-

meters, for example by a given set of spherical harmonic coefficients and

a set of local parameters such as point mass magnitudes. The first set

could be considered known and thus only the second set (e.g. point mass

magnitudes) could be subject to adjustment. This second set would be re-

quired to accommwodate, in a least squares adjustment, the "residual second-

order derivatives" of T obtained by subtracting the "computed second-order

derivatives" of T from the original ones. The "computed" quantities, ob-

tained via fixed spherical harmonic coefficients, could be evaluated as in

(3.72); the partial derivatives 32T/aW2 , etc., will be listed below. The

"computed" quantities can be easily obtained without introducing any errors,

thus (3.72) is indeed suitable for this purpose. The formulas (3.74) of

intermediate precision would be almost equally suitable. It is conceivable

that for many practical applications even the formulas (3.73) could be ac-

ceptable. On the other hand, when dealing with the "residual second-order

derivatives" the formulas (3.73) are believed to be sufficient in most cir-

cumstances and could be used with great advantage. For example, in the case

of a point mass model important mathematical simplications will occur if

these "residual" quantities are described by (3.73) provided they can be

considered distributed on or near a sphere and the point masses are chosen

to lie on another (concentric) sphere of a smaller radius. It may thus be

necessary to introduce further simplifications in the formulas (3.73) in

order to make them computationally viable for an actual adjustment process.

One notices that in the case of point masses or othe~r loc.al param.t.rr'.

there is no reason to avoid the expression 2 r/8 2 and it may be more ad-

vantageous to use (3.73') in lieu of its counterpart in (3.73).
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For reference purposes, the partial derivatives of T with re-

spect to the spherical coordinates are now listed for T expanded in terms

of spherical harmonics. As explained earlier, D2T/ a 2 is not among

them. The familiar expression for the disturbing potential is (see e.g.

[Blaha, 1977), page 80)

N

T = (GM/r) I (ao/r)n AS(n) (3.75)
n=2

where

n
AS(n) = I (ACnmCos mX+ ASnmsin mx)Pnm(Sin) , (3.76)

m=O

N = degree and order of the truncation

AC20 = C20 - 20 ,

AC40 = C40 - C40 , etc.,

the other ACnm ASnm being C , Snm , the spherical harmonic potential

coefficients themselves (in practice this could apply already for C60).

We then have

N
=T/3X (GM/r) I (ao/r)n AS'(n) ,

n=2

N
aT/3j =(GM/r) (a /r)n AS(n)

n=2
N

aT/ar = -(GM/r 2 ) X (n+1)(a o/r)n AS(n)
n=2

N
a2 T/2 = (GM/r) I (a0/r)n AS"(n) ,

n=2
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N
a2 T/aXa-f = (GM/r) I (a 0/r)n A*' (n) ,(3.77)

n=2

aT/aXar = -(GM/r) (n+ 1)(a 0/r~nA'n
n=2

)Nn
a2T/a-Oar = -(GM/r) y (n+ 1)(a 0/r) AS(n)

n=20
N

92 aT/ar 2  = (GM/r') I=~ (n +1)(n+2) (a 0/r )n AS(n),

where the following four notations have been introduced:

n
AS'(n) = m(-AC is in mX +AS nm Cos mx)P nm (sin-) , (3.78a)

M=O

n
AS"(n) -~ - M2(AC Cos mx+ AS sin mx)P (sinfo) . (3.78b)

M=O nm nm nm

n
A(n) = m 1 (ACnmcos mA +AS rmsin mX)dP nm (sinV)/dW (3.78c)

n
AS'(n) = I m(-AC nmsin mX +AS nmcos MA)dpnm(sinO)/d (3.78d)

m=O nmm



3.6 Sunviary and Conclusion

One vertical and two horizontal gradients of gravity are among

the quantities which can routinely be measured and used in specific geo-

detic applications. They represent three out of six distinct second-order

derivatives of the potential in a local Cartesian coordinate system as re-

vealed by various sensors. These six quantities describe the curvature

properties of the gravity field. If their knowledge is to contribute to

a better description of the earth's gravity field, they should be properly

related to the model parameters of the field, such as a set of spherical

harmonic potential coefficients and/or a set of chosen localized parameters,

etc. However, before these second-order derivatives can be related to a

set of parameters, they have to be expressed in terms of the partial deri-

vatives of the potential with respect to the coordinates of a chosen coor-

dinate system. In this chapter, the coordinate systems used are the spheroi-

dal coordinate system {6,u,c} and the spherical coordinate system {X,W,r}.

The model parameters themselves are brought into the picture only

in the closing paragraph of Section 3.5 where they are limited to a set of

spherical harmonic potential coefficients. For the most part, this chapter

has been concerned with the second-order derivatives of a general scalar

function of position (F) with respect to the length elements along a family

of local Cartesian axes, expressed in terms of the partial derivatives of F

with respect to the coordinates of the two systems just mentioned. The func-

tion F is most likely to represent W (actual potential), U (standard poten-

tial), T (disturbing potential), or a coordinate itself (a, r, etc.).

-60-



The desired second-order derivatives of F are expressed in sphe-

roidal coordinates in Section 3.2 and in spherical coordinates in Section

3.4. A link between the two formulations is established in Section 3.3

where all the results in spherical coordinates are obtained also indirectly

through a transformation from the spheroidal system. In addition to pos-

sible applications of similar links, a by-product of such a demonstration

is the verification of the results obtained in either system by direct

methods.

A benefit which surfaced during the development in spherical coor-

dinates is that the demonstrations can be significantly shortened and

brought sharply into focus if the approach pioneered by Marussi [1951] and

elaborated by Hotine [1969] is followed and advantage is taken of tensor

analysis. It thus comes as no surprise that this study, in which such a

methodology has been followed, is intended as a tribute to Professor

Marussi and to the late Martin Hotine for their contributions to theoretical

geodesy.

The general formulas giving the second-order derivatives of F are

made useful for practical applications in Section 3.5, upon decomposing W

into U and T. At least some of the second-order derivatives of W are con-

sidered as observed quantities and F is first specialized to represent U.

In this way the second-order derivatives of T= W-U are obtained and may in

turn be considered as observations to be modeled by a chosen set of para-

meters. For this purpose the new "observations" are expressed in terms of

the partial derivatives of T with respect to the coordinates, accomplished

by specializing F to represent T. The above practical procedure isdeveloped
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in detail in spherical coordinates. If the computation of D 2T/ a 2 is more

complicated than that of the other partial derivatives -- as would be the

case with the spherical harmonic expansion -- this computation can be avoid-

ed by taking advantage of the property AT= O. A typical set of second-order

derivatives of T with the property AT= 0 incorporated (and ;
2T/ -92 absent)

can be found in (3.72). If there is no need to avoid the formulation of

a2T/@; 2, the desired second-order derivatives can be readily transcribed

from equations (3.46).

The possibility of considering a whole family of local Cartesian

coordinate systems has lead to the second-order derivatives of T in the

following two basic forms. The first form (associated with the Cartesian

triad called i") is essentially rigorous and is expressed in the above-

mentioned equations (3.72) or, eventually, (3.46). The second form (asso-

ciated with the Cartesian triad called i) corresponds to the spherical ap-

proximation and is expressed in equations (3.73) where AT= 0 has been in-

corporated; if there is no need to avoid the formulation of a 2T/ 2, the

first relation in (3.73) can be replaced by (3.73'). Another form of inter-

mediate precision (with AT= 0 incorporated) may be found in (3.74).

The formulas in this chapter have been developed for all six

second-order derivatives of W, U, T, or a more general function, although

only one vertical and/or two horizontal gradients of gravity may be routine-

ly measured. One notices that if the observed quantities were given di-

rectly as the second-order derivatives of T (instead of W), the approach

and all the formulas would remain unchanged except that the steps associated

with U would be skipped.
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The versatility in possible applications of the presented formu-

las becomes further apparent upon the realization that they have been deriv-

ed for a general point in space and can thus be used for measurements made

at the ground level as well as at higher altitudes, such as aircraft or

satellite altitudes.

Although the formulas giving the desired second-order derivatives

are to be applied most often in a rotating field, they can be easily spe-

cialized for a nonrotating field as could be required for certain satellite

applications. This specialization consists in replacing (angular velocity

of the earth's rotation) by zero wherever it appears in the formulas expli-

citly, and the same modification also takes place in connection with the

orientation of the triad i".
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I, AhIJ :;IMLNI !iODI-LL I OR I I VL I NVL% I I (A I LD
OBSERVATIONAL MODES

4.1 Mathematical Background

In a simultaneous adjustment of spherical harmonic (S.H.) poten-

tial coefficients and point mass (P.M.) magnitudes as parameters, an obser-

vation equation would read as follows:

V = L -Lb  = F(XaXa) - Lb (4.1a)

= F(Xa,0) + A2X2 - Lb (4.1b)

- F(XO,O) + AIX1 + A2 X2 - Lb , (4.1c)

where V is the residual, La and Lb are the adjusted and measured values of

the observable, the subscripts "1" and "2" refer to the S.H. and P.M. para-

meters, and the superscripts "a", "o" attributed to "X" indicate the adjusted

and initial values of the parameters. Furthermore, "F" denotes the general

model describing the observable, "Ai" denotes the row matrix of partial deri-

vatives of F with respect to the appropriate parameters (sets "1" and "2"

above), and
a 0

XI = X1 - X

X, X = 0 ;

the last relation indicates that the model is linear in the P.M. parameters.
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Equation (4.1b) is written as

V = A2X2 + [F(X',O)- Lb], (4.2)

where

F(x ,O) = F(X ,O) + A1X1 ;

the expression in brackets of (4.2) becomes the constant term in the obser-

vation equation in the cases where the set X is given (fixed) and only X

is subject to adjustment. In either case, the expressions to be developed

include F(X,O) and

AF1 = A1X1

AF2  = A2X2

In practice it is useful to proceed in two consecutive adjustments

of the same observations. First, one minimizes, in the least-squares (L.S.)

sense, the expressions in the brackets of (4.2) as if the observation equa-

tions were of the type

V1 = A1X1 + [F(XO,O) - Lb] , (4.3a)

and then one forms

V = A2X2 + V1 , (4.3b)

as if V1 represented the minus observed values in a linear model where X2 are

the parameters. The equations (4.3a) and (4.3b) considered together are

identical in form to (4.1c). However, the adjustment itself is performed in
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two steps rather than simultaneously as suggested by (4.1c). Splitting

the adjustment in this way is possible in some cases without introducing

any approximations; for example, with the S.H. coefficients as parameters

and with an almost perfect distribution of observations (such as geoid un-

dulations) over the entire globe, two or more subsets of these parameters

can be solved for consecutively with no loss in accuracy, owing to the

familiar orthogonality relations (see e.g. Section 8.1 of [Blaha,1977]).

This is not the case when both the S.H. and P.M. parameters are present,

and the adopted procedure of consecutive adjustments is only an approxima-

tion to a simultaneous solution. However, due to perhaps insurmountable

computer requirements accompanying such a simultaneous solution, the con-

secutive adjustment algorithm offers a viable alternative allowing for a

great reduction in the number of parameters solved for in any individual

adjustment. The first, global (S.H.) adjustment leads to a higher-order

surface (it could be called a "S.H. geoid"). This surface then serves as

a reference surface in separate local (P.M.) adjustments in the areas cover-

ed by a dense net of observations consisting typically of satellite alti-

meter data. The number of point masses and their location including their

depth below the earth's surface are stipulated beforehand. The model equa-

tions for both AF1 and AF2 are based on the expressions for the disturbing

potential (T).

After a L.S. solution, predictions of various quantities inves-

tigated in this chapter may be of interest. They are given by any of the

right-hand sides in equations (4.1), but with the quantity "L b' absent. The

corresponding variances are obtained as follows:
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02 = A TE A
1 1 AlS.H.1

a2 =AE AT
2 A2 P.M. "2

iT ..2 2

where the variance-covarlance matrix E for the parameters (S.H. or P.M.)

is obtained as the inverse of the normal equation matrix in the pertinent

adjustment. The simple addition of variances yielding the total variance

in the last equation above stems from the approximation allowing for an in-

dependent treatment of the two kinds of parameters by the adjustment algo-

rithm.

The expressions for the fundamental quantity, T , will now be

recapitulated. The S.H. formulation appeared in (3.75) essentially as

N
T = (kM/r) I (a/r)n AS(n) , (4.4)

n=2

where the symbol a has replaced a0 , the symbol k (the gravitational

constant) has replaced G and AS(n) has been given in (3.76). The P.M.

formulation at point i can be adopted from (5.9) of [Blaha,1979], giving

Ti = (1/tij)(kM)j , (4.5)

where

= distance between the i-th (observation) point
and the j-th point mass,

(kM)j j-th scaled point mass magnitude.
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In the spherical approximation, R represents the earth's mean radius

(6371 kin) and G is the average value of gravity (980 gals) on the earth's

surface; the point masses are assumed to be at the depth d below the sphere

of radius R, so that

R ( 2  2 3-22F ij)2  (4.6a)

R1 = R -d (4.6b)

F. i =RRICos 1P. , (4. 6c)

Cos = sino i sino i + coso coso~ cos( 1 i- X), (4.6d)

where jis the spherical distance between the points i~j with the coordinates

(o.,X.) and (0? x.), respectively.

We now develop, in a straightforward fashion, several expressions

where the differentiation is performed with respect to iX.i and r.i (r.i is

the radial distance from the geor-enter to point i, numerically r i R):

1/ (i/ j3 ) RR, [Cos . sino. sin~. cos . cos(X.i -X

etc., which lead to

DT /Do [a L /IjJI~iJ(kj (4.7a)

=RRI (1/iie1~cos,1 sinq. sino. coso. cos(kX. -. )](kM).
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aT 1/ax i = -RR1 cos~j (/ 1 )cos~j sln(x1-x.i)(kM). (4.7b)

DT /ar1  = -X lit.) (R- R, cosv,..)(kM). (4.7c)

a2 T RR (l/i.) f{(3RRI/iF

4(Cos . sino. sin~j cost. cos(A. 2_ Cos .)M

92 T/aX?= RR (l1i. J) f 3RR It2

-4cos 1 cos~j sin(X1-Xj)]2 - cos 1 cos@ i cos(x1 - x i)}(kM)i (4.7e)

37T.i/ax -R~ (1/t i (3RR 1/eIt2  cosoi coso . sin(A. - A.

-[Cos4 . sin 3 j- sino.i coso i cos(A i- xl)]

-sin, 1 coso j sin(x1 - x.i)}(kM). (4.7g)

92 T /a~iar1  -R, 1  /t1 3  (cosoi sino. sin*. cos~. cos(x.-x)

j[R(- COO 1/ 3]~ (43h

a2T/iar. R, coso i (1/z.3  casoj sin(Xi - X )
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The mixed second derivatives can be verified upon reversing the

order of differentiation. Furthermore,the Laplace condition should be ful-

filled by construction. This is verified as follows. Upon applying (3.73')

at point i we have

T = C/R) a~/r + (1/R) 2T./ 4 (4.8)

= t ij. 3) {(3R2t?[oo sinpo sinos cosPo cos(A1  2 A)]2 -

and from T yyand T zin (3.73) we deduce

Ty (1t ~(/~ 3) [(3R 2/t1 ?) COS2q0 sin 2( X X.- 1](kM) i (4.9)

T (1/t j3 ) [3 (R -R1 cosij )2/t 2 
- ](kM). 2 (4.10)

(4.10) being essentially (4.7f). From (4.8) - (4.10), straightforward algebra

yields

+ x T + T =z 0 (4.11)

as it should. For reference purposes, from (3,73) we also have

T xy = -3R, (1/e.j .) cos~j sin(X. - A.)

.Lcosoj sinPj - sinoi coso i cos(X~ - X .)](kM). (4.12)

which, however, will not be used in the balance of this report.
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In the following sections, five observational modes will be in-

vestigated: geoid undulations, gravity anomalies, deflections (north and

east) of the vertical, horizontal gradients (north and east) of gravity

disturbance, and vertical gradients of gravity disturbance. In a first

step for each mode, the S.H. formulation for F(X,O) and AF1 =A1 X1 with the

row matrix A1 given explicitly will be presented; this part will not con-

tain the familiar spherical approximation. In a subsequent step, the P.M.

formulation for AF2 = A2X2 with A2 given explicitly will be considered in

spherical approximation. Also included will be the practical discussion

pertaining to the cut-off distance, i.e., to the size of a spherical cap

centered at the observation point beyond which the P.M. parameters are

ignored during the formation of an observation equation.
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4.2 Geoid Undulations

For the most part this model has been already treated in [Blaha,

1977] and [Blaha,1979], referred to in this chapter as [B1] and [B2], re-

spectively.

S.H. part. Upon the customary assumption Wo  U0, stating that

the potential of the geoid equals the potential of the geocentric reference

ellipsoid and is not subject to adjustment, we have from Section 2.1 of

[B2]:

N = N(I+l ) , (4.13)

where
N

N= r0  (a/r')n AS(n) , (4.14)
n=2

with

= kM/W 0 9

r' = a/[1+e 2 sin2T/(1-e2)]

r' being the radial distance from the geocenter to the ellipsoid at the

point where N is being sought, a and e being the semi-major axis and the

eccentricity of this ellipsoid, respectively, and T being the geocentric

latitude of the ellipsoidal point in question; and where

c= c1 sin 2' + c2 , (4.15)
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with

c = -3.0033 C20 - 0.005169 = -0.00192

C2 = 1.0011 C20 + 0.005169 = 0.00408.

The expression (4.13) corresponds to F(XO,O) upon the recognition that the

initial values of the S.H. parameters enter into the definition of AS(n).

A similar statement will be applicable in the following sections, and it

need not be repeated.

If the geoid undulations are part of a satellite altimetry model,

the model equation becomes

H = R- r+(correction)

as described in Section 2.4 of [B1], where H is the distance from the satel-

lite to the (S.H.) geoid, R is the radial distance from the geocenter to

the satellite, and

r = r' + N , (4.16)

(correction) 4.9m sin 2 2F.., per 1000km of H

The parameters X1 are the corrections to the initial values of

the S.H. potential coefficients Cno' Cnm, Snm (referred to as C's and S's),

and the row matrix A1 is composed of the partial derivatives of N with re-

spect to these coefficients. Most often the value Z in (4.13) could be

ignored during the differentiation, the greatest possible relative error

thus introduced being 0.4%; in this case we have
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;)N/C no ro0 (/r,)n n(Sin0l)

3N/DCnm r0(a/r')n cos mX Pnm(sini)

3N/3S nm : r0 (a/r')n sin mX Pnm(sin )

For more accuracy these partial derivatives can be multiplied by (1+E).

In order to eliminate the remaining error, N(1.0011-3.0033 sin 2
T) can be

added to aN/3C 20.

If used as a part of the satellite altimetry model, the above

partial derivatives are combined with those pertaining to the state vector

parameters as demonstrated in Sections 2.4 or 4.1 of [B1]. In the latter

section, the partial derivatives DN/3Cnm, etc., are replaced by the equiva-

lent expressions for ar/C nm, etc.

P.M. part. As in Section 5.2 of [B2], the part AF2 attributed

to the point masses is

Ni = (1/G) (1/ij)(kM)j , (4.17)

which can be evaluated with the aid of equations (4.6). The row matrix A2

can be formed directly from (4.17) with the (kM)j's absent and with the j's

determining the ordering of the elements. Since all the investigated ob-

servational modes are linear insofar as the P.M. parameters are concerned,

the formation of A2 is thus settled once and for all.

An important decision to be made when formulating the P.M. ad-

justment model in practice regards the cut-off distance. In addressing
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this task, only one point mass (kM). is considered and the position of

the observation point i on the earth's surface (here a sphere of radius

R) is varied relative to this point mass. According to [B2], the depth of

the point masses is taken as a 1.6-multiple of their horizontal separa-

tion (as projected on the earth's surface). In particular, if the separa-

tion in degrees of arc is s =20, then

s 222.4 km,

d = 1.6s = 350.0 km

R1  6021 km.

We now specialize (4.17) for j=1, giving

Ni = (1/i )(kM) /G , (4.17')
1 ij J

where the one point mass present, (kM). , is chosen to be a 10 -part of the

earth's kM (kM = 3.986x 10"' m'/sec2 ). Next the position of the observation

point i is varied and the corresponding value N1  computed. This varia-

tion can proceed by so (with intermediate values of interest included), which

makes it possible to see at how many s-intervals away from the observation

point the P.M. parameters will still significantly affect the modeled value

(and vice versa) and should therefore be included in the observation equa-

tion or in the prediction formulas. In theory one could include all of the

P.M. parameters in every observation equation, but this would often result

in prohibitive computer run-time requirements. The specialization illustrat-

ed in (4.17') is typical for the present cut-off analysis and will be used
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for all the other investigated modes as well (the values of s, d and R1 will

be unchanged from the above). Therefore, little additional explanation will

be needed.

The procedure just described leads to the values below which could

serve to plot a curve of geoid undulations (Ni) generated by the given value

(kM). for various angles ij (in degrees):

00 ... 116 m 60 ... 55.2 m

20 ...98.9 m 80 ... 43.6 m

40 73.1 m 100 ... 35.8 m

The undulation curve decreases asymptotically. At the distance 4s (cor-

responding to 80 above) the effect of the P.M. has diminished to about 37.6%

of the maximum effect exercised by a P.M. directly underneath the observation

point. Compelled by practical considerations -- mainly by the fact that the

curve decreases rather slowly beyond 4s -- we can adopt this distance as

the cut-off distance with regard to both observations and predictions.
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this task, only one point mass (kM). is considered and the position of

the observation point i on the earth's surface (here a sphere of radius

R) is varied relative to this point mass. According to [B2], the depth of

the point masses is taken as a 1.6-multiple of their horizontal separa-

tion (as projected on the earth's surface). In particular, if the separa-

tion in degrees of arc is s0 =2', then

s = 222.4 km,

d = 1.6s = 350.0 km ,

R1  = 6021 km.

We now specialize (4.17) for j -1, giving

Ni = (/tij )(kM)./G , (4.17')

-6
where the one point mass present, (kM)j , is chosen to be a 10--part of the

earth's kM (kM = 3.9B6x10' m3/sec2 ). Next the position of the observation

point i is varied and the corresponding value Ni computed. This varia-

tion can proceed by so (with intermediate values of interest included), which

makes it possible to see at how many s-intervals away from the observation

point the P.M. parameters will still significantly affect the modeled value

(and vice versa) and should therefore be Included in the observation equa-

tion or in the prediction formulas. In theory one could include all of the

P.M. parameters in every observation equation, but this would often result

in prohibitive computer run-time requirements. The specialization illustrat-

ed in (4.17') is typical for the present cut-off analysis and will be used
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4.3 Gravity Anomalies

As in the previous section, much of the development in [BI] and

[B2] will now be briefly recapitulated and complemented by the cut-off con-

siderations.

S.H. part. A satisfactory yet simple model has been analyzed

in Chapter 5 of [B1]. From (5.24a) of this reference we write

N
Ag = C I (n-1)(a/r)n AS(n) , (4.18)

n=2

where

C = kM/r2

with r obtained as in (4.16).

According to equations (5.27) of [81], A1 is composed of the

elements

aAg/aCno = C(n-1)(a/r)n P n(sin-)

aAg/aCnm = C(n-1)(a/r)n cos mX Pnm(sin0)

aAg/aSnm = C(n-1)(a/r)n sin mX Pnm(sin-).

The gravity anomaly model as well as the above partial derivatives have been

refined in Chapter 4 of [B2]. Exceptionally, such a model could be used for

maximum accuracy, but there is no need to rewrite all the pertinent formulas.
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P.M. part. According to (5.10) of [B2), we have

Agi = (1/R) I (1/tij)[(R2 -Fij)/Zj2- 2](kM)j , (4.19)

which, as in the case of geoid undulations, can be evaluated by means of

equations (4.6).

The results pertaining to the cut-off distance are presented as

follows:

01 ... 290 mgal 60 ... 21.2 mgal

20 ... 172 mgal 10' ... 1.0 mgal

40 ... 62.0 mgal 201 ... -3.0 mgal

Clearly, the cut-off distance could be chosen as 2s (here 40) where the ef-

fect of the P.M. has diminished to about 21.4% of the maximum effect exercis-

ed by a P.M. underneath the observation point. The 3s-cap (here 60) would be

more than sufficient, the corresponding effect shrinking to a mere 7.3%.
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4.4 Deflections of the Vertical

A component of the deflectionofthe vertical (c) in any azimuth

is given (see e.g. [Heiskanen and Moritz,1967], page 112) as

= -dN/ds

In the north-south direction we have

= -dN/ds 1 ,

and in the east-west direction,

= -dN/ds2

where ds1 and ds2 are positive with increasing latitude and longitude, re-

spectively, and dN is the change in geoid undulation along the appropriate

directions. From the geometry of a spheroid it follows that

ds1  = p do = r' do (1-2e2 cos 2T)

ds2 = v cos¢ dX = r' cosT dX

where p and v are the radii of curvature in the meridian and in the prime

vertical, respectively. It thus follows that

-(1/r')(1+ 2e2 cos 2o) 9N/3T , (4.20)

n = -[1/(r' cosT)] N , (4.21)
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the last expression not to be used for the poles. In the spherical ap-

proximation r' would be replaced by R and e would be replaced by

zero, and the formula (2-204) of the above reference would be recovered.

S.H. part. From (4.14) it follows that

N
(1/r')DN/3- = (ro0/r') I (a/r'n C-S(n),

n=2

where 9(n) has been defined in (3.78c). Formulas (4.13) and (4.20) thus

result in

N
-(r0/rl)(1 +)(l+ 2e 2 cos 2T) I (a/r')n CS(n) ; (4.22)

n=2

in spherical approximation this would reduce to

N
- S(n)

n=2

Similarly, (4.13), (4.14) and (4.21) yield

N
= -(I/cosi)(ro/r')(1+E) ). (a/r')n AS'(n) , (4.23)

n=2

where S'(n) has been defined in (3.78a). In spherical approximation one

would write

Nn = -(llcos-) I ASI(n)

n=2

When forming the elements of A1 for E, it follows from (4.22) that
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ac/acno = -tlar~ dPn(5ifl$)/do_

aE/Dcnm = -tt'(a/r')n cos niX dPn (sinO-)/do

a&/snm= -ttl(a/rs)n sin niX dPn(sin_0)/dT0

where

t =(r 0/r)(1+6)

t' (1+ 2e 2 COS20

Similarly, from (4.23) we obtain

an/aCn = 0,

afl/aCnm = (t/cos-o)(a/r1)n m sin mx Pn,,$sinT)

an/as nm = -(t/coso)(a/r') ni mcos mX Pnm(sin-o)

In spherical approximation all of t, t' and (a/rl)n would be replaced by

unity.

P.M. part. From (4.20) and (4.21) we write in spherical approxima-

tion:

E= -[l/(GR)] aTi/a.i

ni -[l/(GR cosoi)J aTi/aX.i

where we have used

N1 (h/G) TI



Thus, upon utilizing (4.7a) and (4.7b) one obtains

= -(R1/G) ( 3)

J

1[cosi sin - sine i cos~j cos( i - Xj )](kM)j , (4.24)

(R1/G) (1/t ij)coso. sin(x i -X)(kM)j . (4.25)
J

With regard to the cut-off decision, either (4.24) or (4.25) is

applied in conjunction with the given point mass as usual. It is useful to

carry out this analysis in a "canonical form" where the P.M. latitude is

chosen to be zero and where the position of the observation point varies

either in the northerly direction (in conjunction with i) or in the easterly

direction (in conjunction with ni). The same results are obtained for either

quantity as will become clear by inspection. They are listed as

0°  ... 0.0" 60 ... 13.2"

10 ... 18.0" 80 ... 8.7"

20 ... 25.4" 100 ... 6.0"

2.30 .. 25.7" 120 ... 4.4"

40 . 20.5" 200 ... 1.7"

At a point above the P.M. the thus generated deflection is zero (a result

highly plausible). The deflection values rise sharply until slightly more

than ls (here 20) and then fall off quite rapidly; the curve joining such

values approaches zero asymptotically. The P.M. has the most significant
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effect for distances between 0 and 3s (here 60). At the distance 5s (here

100), which can be adopted as a cut-off distance, this effect has diminish-

ed to only about 23% of the maximum effect around is. The cut-off distance

of 4s corresponding to about 34% of the maximum effect could also be adopt-

ed.
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4.5 Horizontal Gradients of Gravity Disturbance

The gradients (horizontal and vertical) of gravity can easily be

reduced to the gradients of gravity disturbance as outlined in the previous

chapter. Thus Wzx, etc., can be transformed to Tzx, etc., where

T = W - U etc. Another possibility is to obtain T etc., directlyzx zX x '

from a gradiometer as indicated in [Moritz,1975]. Although working with

Tz,,x,,, etc., would be more rigorous, the errors introduced by replacing the

triad i" by the triad i are deemed negligible for the present purpose. In

any event, replacing the formulas (3,73) by (3.72), if needed, is an easy

matter. When dealing with the gradients of gravity disturbance in the form

Tzx, etc., we are in fact using a "spherical approximation" but only insofar

as the formulas for the gradients are concerned; the value of r in the

S.H. part is not replaced by R or by another constant but is computed as

in (4.16), with a height above the earth's surface eventually added in case

of aerial or satellite observations. In the P.M. part, r will be replaced

by R as usual.

S.H. part. From the 3rd and 5th relations in (3.73) in combina-

tion with the appropriate expressions of (3,77), we deduce for the hori-

zontal gradients of gravity disturbance in the north- and east- directions,

respectively:

N

T = - n (n+2)(a/r)n AS(n) , (4.26)
zx n=2

N
Tzy = -(6/cosi) I (n+2)(a/r)n AS'(n) (4.27)

n=2
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where

C=kM/r'

and where AS (n) and AS'(n) have been defined in equations (3.78).

The row matrix A, pertaining to the "north" gradient is seen

from (4.26) to be composed of the elements

Tzx/ no =-T(n+2)(a/r )n Pn~)d

3T z /aC nm = -Qn+2)(a/r )n cos mX dP nm(sin )/o

DT zx/as nm = T(n+2)(a/r )n sin mA dP nm(sin )/4

Similarly, with regard to the "east" gradient we have from (4.27):

aT zy/ac no=0,

aT zy/aC n = (C/cos )(n+2)(a/r )n m sin mX P nm(sin- )

aT zy/as = -(T/cosi)(n+2)(a/r )n m Cos mX p n (sin )

P.M. part. Upon replacing r by R in the 3rd and 5th relation

in (3.73) we write for the observation point i in the P.M. model:

T = (1/R) a2 T i/aoiar1 - (1/R 2 )aT.i/a~

T zy = (1/(R cos,1)]a'Ti/DXiarj [1/R' cos~1)]3Ti/9Xj
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With the use of the appropriate expressions from (4.7) this becomes

T -3R, Z (Ii)E (R - R cosij)

,[coso i sinqj - sine i cosj cos( i - Xj )](kM). , (4.28)

T = 3R (1I/Zi ) (R- cos'ij) cosP. sin(X - X )(kM). (4.29)J

It can be noticed that the parts beyond (R-R1 cospij) in these equations

agree with the corresponding parts in (4.24), (4.25).

Similar to the analysis carried out for the deflections of the

vertical, the results obtained for Tzx and Tzy in the "canonical form" are

again indentical. Listed below are a few values in E (E6tv6s, 0.1 mgal/km

or 10-9 sec- 2) obtained by this procedure:

00 ... 0.00 E 60 ... 1.33 E

10 ... 6.68 E 80 ... 0.58 E

1.80 ... 7.75 E 100 ... 0.29 E

20 ... 7.54 E 120 ... 0.17 E

40 ... 3.44 E 200 ... 0.04 E

A curve constructed from these values would be steeper than its counterpart

for the deflections of the vertical. Again, the gradient generated above

the P.M. is zero. The P.M. has the most significant effect between 0 and 2s

(here 4). The cut-off decision could be made in favor of 3s (here 60) where

this effect has diminished to about 17% of the maximum effect around 1s.
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4.6 Vertical Gradients of Gravity Disturbance

S.H. part. From the last relation in (3.73) and from the last

expression of (3.77) we obtain the vertical gradient of gravity disturbance

as

N

Tzz : C X (n+1)(n+2)(a/r)n AS(n) , (4.30)
n=2

where AS(n) has been defined in (3.76),

Accordingly, A1 contains the elements

DTzz/aCno = C(n+l)(n+2)(a/r)n Pn(sinO)

DT zz/aCn = C(n+l)(n+2)(a/r)n cos mX P nm(sino)

Tzz/aS = C(n+l)(n+2)(a/r)n sin mX Pn(Sin¢)

P.M. part. In spherical approximation, the last relation of

(3.73) is written for the observation point i in the P.M. model as

Tz = a2 Ti/ari

which, according to (4.7f), is

Tz = Z (1I/ij3) [3(R - R, COS3ij)2/i- l](kM)j. (4.31)
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The procedure involving the "canonical form" and one point mass

results in

00 ... 18.59 E 60 ... -0.19 E

20 ... 6.97 E 80 ... -0.21 E

40 ... 0.67 E 10o  
... -0.15 E

The vertical gradient curve is thus seen to be steeper than its counterpart

for the horizontal gradients. The maximum effect corresponds now to '.ij 0.

The cut-off distance of 2s (here 40) is more than adequate, the effect of the

P.M. at that distance being about 3.6% of the maximum effect (at ls this ef-

fect would correspond to 37.5%).
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5. SPECIFIC CONSIDERATIONS RELATED TO
SEA SURFACE TOPOGRAPHY

5.1 Outline

The sea surface topography represents a dynamic surface whose

slight changes in shape are imputable to astronomical forces in combina-

tion with other effects (oscillations in water basins, shallow water ef-

fects, meteorological effects, etc.). The astronomical forces are at

the basis of tidal changes in the sea surface. The attraction of the

moon represents the most important aspect of these forces. By comparison,

the effect of the sun amounts to only about 46% of the effect of the moon,

both effects having similar characteristics.

If the moon's orbit were in the plane of the earth's equator,

there would be two high tides and two low tides in a lunar day (approxi-

mately 24 hours and 50 minutes, or 1.035 solar day), and the tides would

be semi-diurnal. If the plane of the ecliptic coincided with the plane

of the earth's equator, the sun would produce similar effects except for

the magnitude and the period of the tidal cycle (a solar day has 24 hours).

The varying declinations of the moon and the sun produce additional ef-

fects that are essentially diurnal. Irregularities of the moon's orbit

around the earth and in the earth's orbit around the sun (varying dis-

tance and varying velocity) require additional considerations as explain-

ed e.g. in Chapter 2 of [Macmillan, 1966].
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Further complications are due to the departure of the earth's

structure from an idealized model which would give rise to the "equili-

brium tide". Assumptions associated with the equilibrium tide include a

completely rigid earth covered over its entire surface by deep water,

absence of friction in the water envelope, absence of meteorological and

other disturbances, etc.

In reality, tidal changes include two important effects expres-

sed by Love's numbers; these effects are the ocean floor deformation and

an additional tide induced by such a deformation. If included in the

tidal model, they would result in modifying the amplitude of the equili-

brium tide to a limited extent. However, this consideration is not al-

ways of paramount importance in applications of satellite altimetry. In

particular, when one proceeds to adjust satellite altimetry ina localized

area this amplitude may also be subject to adjustment and the inclusion

of a factor due to the above two effects would simply lead to the replac-

ing of one unknown parameter by another (the altimeter does not offer

means for separate solution of Love's numbers). Accordingly, only the

equilibrium tide will he considered in this discussion.

In the satellite altimetry mathematical model the ocean surface

is considered as equipotential. At a given moment the equilibrium model

results in an equipotential surface (under the assumption of an idealized

spherical earth it is a spheroid). Time averaging applied to this surface

also results in an equipotential surface (a different spheroid). Accord-

ingly, if the altimeter could, over a sufficiently long time span, sense

the latter (average equipotential) surface, the two models would indeed
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be compatible. However, this is not the case because of several effects

not accounted for including water friction, continent boundaries, currents,

meteorological factors, etc. Consequently, the surface sensed over a

given time span exhibits slopes in different areas with respect to an equi-

potential surface. If an adjustment does not allow for the inclusion of

such slopes, the parameters describing the equipotential surface may be

slightly deformed so as to accommodate, in a least-squares sense, the mea-

sured surface. It is thus desirable to provide for additional parameters

describing the sea surface slopes, at least in the areas where the slopes

are suspected or known to exist. If the time history of such slopes is of

interest (assuming that the slopes are changing) the adjustment may be re-

peated at suitable time intervals provided sufficient altimeter data are

available. A simple model will be developed shortly that allows for the

inclusion of new parameters in an adjustment, accommodating the slopes

(including a vertical separation) between the measured surface and the

equipotential surface in predetermined areas.

However, prior to this task we shall direct some attention to

the problem of a reference surface for heights, which we shall call the

fixed, or static, geoid. In [Bomford, 1g75], page 247, it is suggested

that "the geoid (and the datum of height) is an equipotential surface of

the earth's attraction and centrifugal force only, not including the sun

and moon...". It is also stated that "for its datum surface for height,

every country or group of countries select mean sea-level at a defined

tide gauge...". However, even if the best possible mean (in time) sea

level were selected at given points, it could not represent globally a
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consistent datum for heights, i.e., the static geoid. This can be visu-

alized as follows. Suppose that the static geoid is a perfect sphere

with a known center and of the same volume as a mean sea surface cover-

ing the whole globe, assuming the equilibrium model. Due to the moon's

and sun's attractive forces, the mean sea surface is a spheroid. If one

wishes to define the static geold (a sphere in this context) passing

through a given tide gauge on the equator, one is faced with the problem

that this sphere is larger than that representing the static geoid pas-

sing through a given tide gauge at a higher latitude. Thus, in order to

define a unique global datum for heights, a suitable correction should

be applied to the mean sea level as a function of latitude. This problem

is discussed in the following section where the moon's effect is consider-

ed first and the moon-earth distance is assumed constant, equal to the

mean distance. The sun's effect is incorporated along similar lines.
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5.2 Considerations Related to Static Geoid

In this section the equipotential surface without the influence

of astronomical forces is assumed to be a sphere. This would be equiva-

lent to considering the earth a point mass or a homogeneous nonrotating

sphere, or simply to retal'ning only the leading term in the expansion of

the earth's potential in spherical harmonics, etc. In determining the

changes in the potential due to themoon and/or sun such approximation is

acceptable. The static geold is thus considered to be a sphere and the

main task consists in determining its radius (R) or, equivalently, its re-

lation to the mean sea surface. The assumption of the equilibrium tide

is used throughout.

In considering the moon's effect in this model, the total poten-

tial at a point (P) on the static geoid is determined as the sum of the

potential generated by the earth's mass concentrated at its center, of the

potential due to the moon's mass (concentrated at the moon's center) and

of the potential generated by the monthly rotation of P around the bary-

center of the earth-moon system. A new equipotential surface passing

through P is computed (see [Bomford, 1975], pp. 271, 272) through its

"tidal undulation", N, with respect to the sphere of radius R. In this

process, the volume enclosed by the two surfaces is constrained to be the

same, i.e., the mean value of N over the sphere is constrained to zero.

This is plausible since the volume of the water envelope as well as the

volume of the solid earth beneath it do not change -- no mass is addedor

subtracted. Upon considering the moon's orbit as circular and adopting
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the average earth-moon distance for this purpose, the tidal undulation N

for any time and place is

N a k(cos 2z + 1/3) , (5.1)

where z is the angle between the directions toward P and toward the moon

measured at the earth's center; it is approximately equal to the zenith

distance of the moon at P (the angle under which the earth's radius is

seen from the center of the moon is neglected). The angle z is computed

as a function of geographic location (of P) and of time. The above ap-

proximation of circular orbit yields

k = k= 0.267m. (5.2a)

In case of the sun (5.1) would hold again, but with

k = k2 = 0.123m, (5.2b)

which indicates that the tidal amplitude associated with the sun is about

46% of that associated with the moon. If an overbar denotes the mean

over a unit sphere, it is confirmed that N= 0 because at a given moment

cos 2z =-1/3.

It will be shown shortly that the surface determined by (5.1)

is a prolate spheroid (ellipsoid of revolution) with its long axis point-

ing toward the moon. This situation is schematically illustrated in

Figure 5.1 where the "z" corresponding to P1 ' P2  and P' could be denoted

as z, z2  and z' , respectively; in particular, z1= 0, z2 = 90
° and
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Z = 54.7. (5.3)

(There are four such values of z' corresponding to N= 0, symmetric about

the axes x,y.) Associated with (5.2a), we have

N1 = 0.356m, N2 = -0.178m, (5.4)

while for (5.2b) these undulations would be 0.164m and -0.082m, respec-

tively; if both the moon and sun were in line with the earth (i.e., at

conjunction or opposition) the corresponding values would be added alge-

braically and the tidal undulations would reach 0.52m and -0.26m, re-

spectively. If, in this case, the x axis in Figure 5.1 depicted the

earth's equator, the tidal range on the equator would reach about 0.78m

(i.e., 0.52m + 0.26m) ; this order of magnitude is in agreement with the

realistic tidal range in open ocean.

In order to show that the curve representing "spheroid" in Fig-

ure 5.1 is indeed an ellipse -- or very nearly so -- we adopt from the

figure and from (5.1):

a = R + (4/3)k , b= R- (2/3)k ;

upon attributing to the point Q the coordinates x= (R+N) cos z and

y- (R+N) sin z with N given i'n (5.1), after some manipulation we obtain

x2/a2 + y 2/b2

where

0.25x 10-1 ,
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Px

(toward moon)

spheroid

Figure 5.1

Schematic representation of the static geoid and equilibrium tide

which indicates that to any reasonable approximation the curve in question

is an ellipse.

In Order to acquire a good idea about the separation between the

two surfaces depicted in Figure 5.1, we compute an "RMS separation" as fol-

lows:

N2 = k2 Cos22z + (2/3)cos 2z + 1/9]

'T 27r
cos 22z = (4n) 1  f f cos 22z sin z dz du

z=O u=O
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The last expression eventually yields 14/30; with cos 2z given earlier,

we find

(N) = 0. 596 k.

Repeating also a previous result, we have for the effect of the moon:

N=0 , (5.5a)

(N') = 0.16m. (5.5b)

If the effect of both the moon and sun at conjunction or opposition are

considered, the value in (5.5b) is replaced by 0.23m.

The main point of the present discussion is the consideration of

mean values over a given time interval. The (approximate) zenith distance

z is changing with time due to the earth's rotation and the moon's orbit,

and it can be expressed from the following standand formula of spherical

astronomy relating the horizon and hour angle systems (see e.g. [Mueller,

1969], p. 38):

sin z cos A = sin6 cosO - cos6 cos h sin*

sin z sin A = -cos6 sin h (5.6)

cos z = sin6 sine + cos6 cos h cos , J
where A is the azimuth of the celestial body (here the moon), h and 6 are

its hour angle and declination, respectively, and 0 is the (geocentric)

latitude of the observer. From (5.6) it readily follows that
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cos 2z = -cos 2@ + sin 24 sin 26 cos h + cos 20 cos 26 (5.7)
+cos 20 cos

26 cos 2h - cos 26 sin
2h .

With regard to h, great simplifications will take place if the averaging

is carried out over an integer number of lunar days (i.e., over an integer

number of 27r).

The time-averaging process for 6 is facilitated by assuming that

the plane of the moon's orbit coincides with the ecliptic which makes an

E = 23.50 angle with the equator. In reality, the plane of the moon's or-

bit is inclined by about 50 with respect to the ecliptic and thus inter-

sects the plane of the equator at angles ranging from a minimum of 18.50

to a maximum of 28.50. However, it will be shown that this approximation

results in an error in tidal undulation of less than 2cm in the worst case.

Consequently, the formula giving the declination of the moon can be tran-

scribed in our context from the formula below, giving the declination of the

sun. In particular, the relationship between the right ascension and eclip-

tic systems yields for s= 0 (the ecliptic latitude of the sun):

sin6 = sinx sine , (5.8)

where X is the sun's ecliptic longitude measured counterclockwise from the

vernal equinox (point of intersection between the plane of the ecliptic and

that of the equator). This follows from equation (3.11) of [Mueller, 1969].

We only have to remember that when adopting this equation for the moon, A

covers the interval 2w in a sideral month (27.32 days). When averaging, it
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will be advantageous to integrate, with respect to X, over an integer num-

ber of w corresponding to an integer number of 13.66 days. If the varia-

tions in e were significant, the integration could probably be extended

only over 13.66 days which would correspond to n in A and to about 13x 27T

in h (more precisely, to 13.2x 2w in h). However, since e has been fixed

in our model, the integration can be extended over any number of 13.66 days

which will, of course, include a very large number of 1.035 days (the larger

this number the lesser the averaging error if this number is not a perfect

integer). This device also allows for a simple mathematical combination

of the moon's and sun's effects not only because the "e" are identical but

also because in the case of the sun the integration over merely 7r in A in-

volves the time interval of half a year (which is an order of magnitude

greater than 13.66 days). The useful outcome of this argument is that our

simplified -- although sufficiently accurate -- model allows for a simulta-

neous time-averaging over an integer number of 27 in h and an integer number

of w in X for both the moon's and sun's effects.

When averaging (5.7) over the above intervals, the second term on

the right-hand side vanishes because of cos h. We then substitute (5.8) in

(5.7) and deduce:

Xl+n r

(n)-  f (1- sin 2E sin 2X)dX= 1 - sin 2C

X1

hl+2m O
(2mnr "  5 (s 2h dh= ,

hsin h)
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yielding

<cos 2z> = -cos 24+ (1 - slne)[(3/2)cos 20- ]

where <> indicates a time average. After little manipulation, from (5.1)

we obtain

<N> = k(cos 24-1/3)[1-(3/2)sin2c] , (5.9)

where k may represent k1 (for the moon), k2 (for the sun), or k1 + k2 (for

both). In order to illustrate the error due to fixing c in the model in-

volving the moon, we take k from (5.2a) and consider = +i1 resulting in

the largest magnitude of <N> . The following values <N> are obtained for

chosen s's:

18.50 ... -15.1 cm, 23.50 ... -13.6 cm, 28.50 ... -11.7 cm.

Thus the worst error associated with c = 23.5 0 is 1.9cm; for O= 0 this er-

ror would be 0.9cm. The acceptability of our model has thus been establish-

ed.

The relation (5.9) can also be presented as

<N> = (3/8)k(cos 20- 1/3)(cos 2e+1/3) . (5.10)

This formula indicates that if E were 54.71 (as z' in equation 5.3) the

time average of N would be identically zero and the mean sea surface "Old

coincide with the static geoid. If the x-axis in Figure 5.1 represented

the equator, the "ecliptic" would pass through the point P'. As a matter

of interest we confirm that the average of <N> taken over the sphere is
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zero, due to cos 20= 1/3; since in (5.5a) we had N= 0 at any given

mement, it thus follows that

<N> = <N> = 0

as it should (the order of integration does not matter).

Upon taking c= 23.50 in (5.10), we have

<N> = k(cos 20- 1/3) , (5.11a)

= 0.381 k; (5.11b)

if k represents kI , k2 , or k1 +k2 , the values of k are 0.102m, 0.047m,

or 0.149m, respectively. In terms of the polar distance e(e= Jr- 0),

equation (5.11a) is rewritten as

<N> = (-)(cos 26+1/3)

Thus the mean sea surface in our model is a geocentric ellipsoid of revolu-

tion whose minor axis passes through the poles. This is seen immediately

from the analogy with the formula (5.1) and Figure 5.1; the x-axis and the

angle z are now replaced by the polar axis and the angle 0, and the negative

value of (-k) indicates that this axis is the minor axis of an ellipse.

Upon including the effect of both the moon and the sun, the for-

mulas (5.11) giving the separation between the static geoid and the mean sea

surface under the assumption of equilibrium tide is

<N> = 0.15x (cos 20- 1/3) meter . (5.12)
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From (5.12) the largest separation is found for the poles where it reaches

-20cm. For the equator we have <N> = 10cm. This or a similar type of "cor-

rection" is significant if a consistent relationship between the two sur-

faces is needed to within a decimeter precision.
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5.3 Considerations Related to Sea Surface Slopes

It has been mentioned that in various areas the sea surface may

depart from an equipotential surface. In a global adjustment of satellite

altimetry the latter is described by spherical harmonic potential coeffici-

ents (C's and S5's) truncated at a predetermined degree and order; for ex-

ample, the model may be complete through the degree and order (14,14), etc.

If, in a given area, the sea surface is believed to intersect an equipoten-

tial surface along a line of known direction, a parameter describing an

average slope of the sea surface with respect to the equipotential surface

can be added to the adjustable C's and S's.

There may be as many new parameters of this type as there are areas

suspect to exhibit sea surface slopes. One such area can be, for example,

the Equatorial Pacific Ocean where an east-west slope may be indicated. The

line of intersection, henceforth called "zero line", is in this case chosen

to run north-south, typically through the middle of the area of interest (the

area can be delimited by the geographic coordinates of its four corners and

every observation point is checked whether it falls within the boundaries).

However, an additional parameter may be included in an adjustment,

representing a vertical shift of the sea surface. This has the effect of al-

lowing the zero line to translate, parallel to itself, to the right or left

from its stipulated position. Accordingly, two sea slope parameters (one for

the slope as such, one for the shift) per region of interest may be introduced

in a global adjustment.
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The slope parameters have characteristics of an average with

regard to both the surface and the time. The first property follows from

the fact that one slope parameter applies for a whole area and indicates

a general trend of the sea surface from one end of the area to the other.

And the second property can be ascribed to altimeter data being usually

collected over extended periods of time (e.g., several months) so that many

periodic (e.g., tides) or random fluctuations are smoothed out by the ad-

justment.

If a time variation of a given sea slope is of interest, the same

kind of adjustment may be repeated with data sets having a comparable spacial

distribution as well as time span, but collected at different time epochs.

In order to bring the sea slope parameters into focus during such a process,

the C's and S's could be fixed (eliminated from the adjustment) or weighted

at the values which would be the same during all such adjustments.

A localized adjustment has been performed in the past with point

mass magnitudes as parameters, based on the residuals obtained in a global

adjustment (via C's and S's). The localized adjustment can contain the sea

slope parameters as well, but there is likely to be only one "area of in-

terest", i.e., the total area of the point mass adjustment. In other re-

spects the sea slope parameters can be treated in a similar way as described

above. Thus the localized adjustment may contain only two additional para-

meters, provided the slope and the (vertical) shift of the sea surface are

indeed sought in that area.
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We now return to the global adjustment and illustrate how the sea

slope parameters could be useful and how they could be handled. It has al-

ready been suggested that they may contribute to a "better" adjustment. In

particular, they could prevent the C's and S's from being contaminated by

long-wavelength distortions represented by actual sea slopes if these are

significant. Furthermore, the residuals will have in general smaller magni-

tude when these parameters are included since the adjusted surface will fit

better the observed surface in a physically meaningful manner. As a by-

product,knowledge about sea surface slopes can serve, in its own right, in

specific applications.

An example of two areas with separate sea slope parameters is il-

lustrated in Figure 5.2. An added complication is that the zero line is not

straight which accounts for an auxiliary area wedged between the other two.

In this particular area the zero line reduces to a point (Q). The sea slope

parameters in this area could be taken as the mean of the corresponding para-

meters in the neighboring areas. A simpler case would be represented by a

straight zero line with the two areas separated by a straight line (perpen-

dicular to the zero line). Eventually, there could be an intermediate area

between the two in the form of a strip (not a wedge) where the values of the

sea slope parameters would again be the appropriate means. The simplest case

consists of individual disjoint areas or of only one area attributed sea

slope parameters.
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zero line

area 1
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area 2

Figure 5.2

Illustration of two basic areas (1 and 2) and a bent zero line;
the area 1 is delimited by the points 1, 2, 3, 4, Q

The adjusted global geoid described by the C's and S's will be

smooth, but slight discontinuities in the residuals may be experienced at

the edges of a sea slope area, especially far from the zero line, except

where the area is delimited by continents. However, this represents no

cause for concern since a subsequent local adjustment usually involves a

region which is all within one such area, and even if there should be an

exception to this statement the point mass parameters would provide for a

smoothed local geoid.
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If the sea slope areas present in an adjustment cover most of

the world's oceans and if all the zero lines are chosen to have central

locations, one would expect that

all areas
(area) i x (shift parameter)i = 0 . (5.13)

i=1

It is so because the sea surface topography is not likely to enclose dif-

ferent volume from that enclosed by an equipotentlal surface (fluctuations

of the sea surface around an equipotential surface are believed to be small

and to have random characteristics). In fact, equation (5.13) could be

adopted as a constraint or, which amounts to the same thing in practice, as

a heavily weinhted observation equation.

Before forming an observation equation involving the two sea slope

parameters ("t" for the slope itself, "q" for the shift) the distance between

an observation point and the zero line has to be computed. This distance

(tA in Figure 5.2) will have the sign associated with it in such a way that

the distance is positive due west of the zero line. This means that for t>O,

the sea surface slopes "up" due west of the zero line and "down" due east of

this line; for t<O the situation is reversed. Since, in the observation

equation, the constant terms are expressed in meters the parameter q will

have units m and the parameter t will have units rm/km (i.e., meter/mega-

meter), provided the angular distance tA (in radians) is multiplied by R, the

earth's radius, expressed in megameters (R-6.371Mm). The value of tA is

found with the aid of Figure 5.3. From the spherical triangle PAE we have
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sin p sln. = sin (Xo A) cosO , (5.14a)

sin P COST = sine , (5.14b)

where the index "o" is associated with the zero line and the geographic

coordinates (¢,X) associated with the observation point (A) are not in-

dexed. From AEA' we deduce

sin "A = cosa sin p COST + sin sin p sinT . (5.14c)

When (5.14a) and (5.14b) are used in (5.14c), ZA with the appropriate sign

is given as

tA = arc sin [cosco sine + sin sin (Xo - X) coso] (5.15)

The values of cosct0 and sin a are computed once and for all in the region

of interest (at is measured as indicated in Figure 5.3).

In case of the situation leading to IB of Figure 5.2, a simple

application of the law of cosine yields

cosB = sine sin q + cos€ coscQ cos (XQ- X)

signt B = sign (XQ- X)

where sin Q and cos Q are computed once and for all for the whole "wedge"

region.
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IT zero line

Greenwich 7"

meridian A

P

Figure 5.3

Spherical triangles depicting the zero line and an observation point (A)

In a matrix form, the "undulation" in one area due to the sea

slope parameters is

AN = [1 ZR][]

tI

where t can be of the type tA or t, In general, this can be written as

AN =[a b]~q (5.16)
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where

a 1 in the area of interest (5.17a)

b 0 re

a =0 outside the area of interest(5.17b)

b 0 he o

If there are more than one area of interest, they are numbered 1,2,... The

same applies for the coefficients a,b and for the parameters q,t so that we

may have al , bI ;a 2 , b2 ; ... , t1 ; q2 , t 2 ; "'" In forming the

observation equation we keep in mind that the initial values of the para-

meters q,t and thus of AN are zero so that the constant term is unchanged

from an earlier formulation without the sea surface slopes. The part cor-

responding to (5.16) simply augments the "terrestrial part" in the original

equation of satellite altimetry as presented in Section 2.4 of [Blaha, 19771.

With the other symbols described -- and expressed in detail -- in this ref-

erence, we present schematically the augmented observation equation:

a(R- r) dX [ar Dr 9r ar

, 0X,Y,Z ) do Cnm asnm

dX

dZ

(5.18)
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dr0

a1 b, a2 b2 ;.. dcn + t(Ro -r + d) -HUJ

dSnm

ti

q2

t 2

where a1  b. are determined as in equations (5.17).

L t1



APPENDIX

COMPARISON OF THE NODE-POINT APPROACH
AND THE POINT-MASS APPROACH

The present topic deals with the geoidal adjustment by means of

node point parameters and point mass parameters. The node point approach

has been treated in the papers [Hadgigeorge and Trotter, 1976], abbreviated

as [HT], and [Eckhardt and Hadgigeorge, 1977], abbreviated as [EH]. The

notion of covariance function computed via the spherical harmonic potential

coefficients is used in both papers; however, the solution bandwidth in

[HT] corresponds essentially to the degrees 3 through N and in [EHI, to the

degrees n through N, where n was chosen as 7. According to n, the reference

surface can be either a spheroid (6= 3) or a higher order surface (n= 7,etc.);

in general, the model is assumed to be known through the degree n- I. The

paper [HT] also contains the spheroidal multiquadric surface model in which

the covariance function is replaced by the "kernel function".

The spacing of the nodes may be limited by the data distribution;

in any event, it is reasonable to require that at least two observations in

each direction should be present per node point. The node points are assum-

ed to be fairly uniformly distributed through the region of interest, the

nodal spacing being so (degrees of arc). If the solution is carried out in

terms of spherical harmonics, the harmonics up to and including the degree

N= 1800/so could be adjusted provided the global distribution of data exists

and, of course, a sufficiently large computer is available. The covariance

function for geoid undulations corresponding to the bandwidth n through N
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is given as

N

DO1  y 2 {N,N) P (Cos *ij) (A.1)Oij) n n

n=n

where D(ij) represents the covariance of the geoid undulation (denoted N--

not to be confused with "N" of the truncation) for two points, i and j, sep-

arated by the spherical distance aij' an {N,N} is the degree varianceWn

(degree n) for geoid undulations, and Pn (cos ij) are the Legendre functions

in argument cos ij. The cross-covariance function for gravity anomalies

(Ag) and geoid undulations (N) can similarly be written as

N
H(ij)= I a2 {Ag,N} cos ) (A.2)

n=n

where 2 {Ag,N} is the degree variance linking gravity anomalies and geoidn

undulations.

In the above papers the covariance function serves to express the

geoid "undulation" (N.) at a geoidal point i as a function of parameters c.

at selected nodes j, namely

N1  = i D(*ij)c. , (A.3)

where the summation is carried out, in theory, over all of the node points;

the "undulation" is written in quotes to indicate that the value Ni may be

referred to a spheroid (as is customary for geoid undulations) as well as

to a higher order surface. The vector of parameters cj is interpreted as

[ I  : [MINN T )l"[NI (A.4)
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where [N] is the vector of geoid "undulations" at the node points and the

matrix [M{NNT}] is composed of variances and covariances at these points

computed from the (single) covariance function, such as (A.1) in the present

case. This follows from the definition of covariance function, i.e., from

D(ij) R M{NiN j}

where M indicates a mean value over a given domain (in the present context the

domain for the covariance functions is the whole globe represented by a unit

sphere; in the averaging process the "unwanted" harmonics are neglected).

With the interpretation (A.4) the model expressed in (A.3) is the classical

prediction model where the values Ni are predicted from the values N. the

"best" way, in the sense that the variances of the prediction computed through

the same operator M are the smallest possible.

In the following step, the prediction model (A.3) is adopted as the

mathematical model to be used in a least squares adjustment. The values N.

whose number is much higher than that of N. , are considered as observations

and the quantities cj are adjusted in the usual sense (VTPV=minimum). In
this process D(pij) simply represent the deterministic partial derivatives

and cj are the unknown parameters. These parameters can then be used to esti-

mate other quantities, not only the geoid "undulations" at arbitrary points,

but also gravity "anomalies" (the same meaning is attached to the quotes as

previously), etc. The formula for predicting the "anomalies" is again based

on a prediction model which, in this case, has the form

Agi : H(ij i (A.5)
J
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When considering the "kernel function" of Section 2.2 of [HT],

one should keep in mind that only the geoid "undulations" can be estimated

from the adjustment and that the main difference between that approach and

the one with the covariance function consists in a different shape of the

pertinent functions (kernel versus covariance function). Accordingly,

only the covariance function approach will be considered in the upcoming

comparison with the point mass approach.

The mathematical models relating the geoid "undulations" and gra-

vity "anomalies" to the point masses can be obtained from (4.17) and (4.19)

as

Ni = i (c/ ij)(PM). , (A.6)

where c= 40.68x10 6 m 2' £i is the separation between the i-th "undulation"

point and the j-th point mass and (PM). is the magnitude of the j-th point

mass in units of 10-6 the earth's mass; and

Agi = (ab)ij(PM)j , (A.7)

where

a i = c'/tij

c' = 6.2565x106 mgal m

bij Rb1/t2 - 2

bi- = R - cos ij

R = earth's mean radius (6.371x106 m)
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I d :depth of point masses.

If properly scaled, the model (A.6) is comparable to the model

(A.3) except for the form of the "covariance" functions; the quotes will

be used to include the function c/L. in (A.6) which has not been derived

as a covariance function. The scaling of the adjustment models (A.3) and

(A.6) would not affect the respective least squares solutions; however,

the predictions (A.5) and (A.7) would be affected if the scale factors did

not correspond to their counterparts in the original models (equations A.3

and A.6). In the sequel, the scaling of (A.5) and (A.7) will not correspond

to that of (A.3) and (A.6) for practical reasons; however, the differences

in scaling will be listed. In all the cases considered, the scaling will be

such that the "covariance" functions in (A.3), (A.6) as well as in (A.5),

(A.7) will have the value "100" for ij= 0. Thus, the shape of the functions

may be easily compared upon first inspection. The units in any of the models

present no cause for concern; the functions may be imagined scaled also in

this respect so that the units are comparable.

The cases compared correspond to the spacing of node points in

so = 60 (equilateral) intervals which are considered to entail the degree and

order truncation N= 30. The covariance functions for this N are then com-

puted according to (A.1) and (A.2), for the cases h= 3 and h= 7. The hori-

zontal separation of point masses is also 60 or .667x101 m. For illustra-

tion purposes three different depths of the point masses have been selected:
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d = 1.6 s = 1.07x106 m , (A.8a)

d = .52s = 0.35x10'm (A.8b)

d = .80s = 0.53x10' m . (A.8c)

Originally, the ratio d/s= 0.8 as in (A.8c) has been suggested in [Blaha,

1977] under the assumption that the spacing so of point masses should pro-

vide an adequate description of the geoid to within the degree and order

N= 1800/sO. Later, in [Blaha, 1979], a one-decimeter precision of the ad-

justed geoid was contemplated; a recommendation was reached to the effect

that the number of point masses should be doubled in each direction while

their depth should remain unchanged. This would result in the angular sep-

aration of point masses so = 1800/N and in the ratio d/s= 1.6. However, to

make a meaningful comparison with the present node point approach, the orig-

inal arrangement has been reverted to in (A.8c); in particular, so = 1800 /30

= 60 has been adhered to as well as d/s= 0.8. If a more faithful representa-

tion of the geoid were required, the number of point masses as well as the

number of node points would be doubled along each dimension. But in that

case the comparisons would be completely analogous to those carried out pre-

sently.

The "covariance" functions corresponding to the adjustment models

(A.3) and (A.6) are presented in Figure A.I. The cases denoted 1) and 2)

represent the (scaled) covariance function of the node point approach; the

curve 1) is the result of the choice n= 3 while the curve 2) is the result

of the choice i= 7. For higher and higher order reference surface (i.e.,

for greater values of n) the covariance function becomes markedly steeper.
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The cases 3), 4), 5) in the figure represent the "covariance" function of

the point mass approach and they correspond to the depths of point ciasses

selected in (A.8a), (A.8b) and (A.8c), respectively. The shallower the

point masses, the steeper the "covariance" function. In either approach,

when this function is steeper the local detail can be better represented

provided the data are sufficient.

The "cross-covariance" functions corresponding to the prediction

models (A.5) and (A.7) appear in Figure A.2 where the same five cases are

presented. All the curves are now steeper than their counterparts in Fig-

ure A.1; this is natural since gravity anomalies represent a less smooth

function than geoid undulations (the same holds true for "anomalies" versus

"undulations"). As in Figure A.1, greater values of n and smaller values

of d give rise to steeper functions. In both figures, o is the angle

pij in degrees. Below are listed the numerical scale factors used for the

geoid "undulation" models (Figure A.1) and the gravity "anomaly" models

(Figure A.2):

Case 1) Scale factor 6.042 (for N) and 3.397 (for Ag), ratio 0.5622,

Case 2) Scale factor 0.837 (forN) and 1.336 (forAg), ratio 1.596;

Case 3) Scale factor 0.3811(for N) and 0.2325(forAg), ratio 0.6101,

Case 5) Scale factor 0.7621(for N) and 1.164 (for Ag), ratio 1.528,

Case 4) Scale factor 1.162 (for N) and 2.896 (forAg), ratio 2.492.

The above numbering of cases 3, 5 and 4 corresponds to their degree of steep-

ness. When the above scale factors are applied to the functions of the fig-

ures, original (unscaled) numerical values of the functions are recovered.

-118-



100-

90-1

801 2)

701 -

60-4

5)---
50-

40.

30-I

20-S1 
%

10-

015 60 70
-10.IYA0 

00

_20. 000

-:30-

Figure A.1
Scaled covariance functions for N in the node-point approach

and comparable functions in the point-mass approach
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Scaled cross-covarlance functions for Ag,N in the node-point approach

and comparable functions in the point-mass approach
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The term "ratio" indicates the ratio of the two scale factors in each case

(scale factor for Ag divided by the scale factor for N). In both approaches

a steeper curve exhibits a higher "ratio".

Initially, the case 5) of the point mass approach was to be com-

pared with the cases 1) and 2) of the node point approach corresponding

respectively to the adjustments carried out in [HT] and [EH]. From the fig-

ures it appears that the case 5) is quite comparable withthe case 2) where

= 7. For the sake of a better understanding of the point mass approach

two additional cases have been included, one corresponding to deeper masses

(case 3) and the other corresponding to shallower point masses (case 4).

These comparisons have indicated that the main difference between

the node-point approach and the point-mass approach consists in somewhat dif-

ferent shapes of the "covariance" functions. In certain cases the disparity

of the two approaches is not great; this is apparent for the cases 2) ver-

sus 5) where a fairly good agreement may be observed in the two figures,

especially for smaller values of *o. Here the covariance function construct-

ed for the degrees h= 7 and N= 30 corresponds to the depth 0.53x106nm of the

points masses distributed exactly as the node points. A remarkable agree-

ment is noticed with respect to the values "ratio" for these two cases. This

seems to indicate that not only the adjusted values (geoid "undulations")

but also the predicted values (gravity "anomalies" in addition to predicted

"undulations" at arbitrary locations) could agree fairly closely between

the two adjustments. In other instances the difference between the two ap-

proaches may become significant, for example if shallower point masses are
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not matched by a sufficiently high-order reference surface. Comparisons

with other localized adjustment models would proceed along similar lines

with emphasis on the corresponding "covariance" functions, the earlier-

mentioned multiquadric model being a good example in this respect.
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